Metamath Proof Explorer


Theorem ofc2

Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses ofc2.1 ( 𝜑𝐴𝑉 )
ofc2.2 ( 𝜑𝐵𝑊 )
ofc2.3 ( 𝜑𝐹 Fn 𝐴 )
ofc2.4 ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐶 )
Assertion ofc2 ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹f 𝑅 ( 𝐴 × { 𝐵 } ) ) ‘ 𝑋 ) = ( 𝐶 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ofc2.1 ( 𝜑𝐴𝑉 )
2 ofc2.2 ( 𝜑𝐵𝑊 )
3 ofc2.3 ( 𝜑𝐹 Fn 𝐴 )
4 ofc2.4 ( ( 𝜑𝑋𝐴 ) → ( 𝐹𝑋 ) = 𝐶 )
5 fnconstg ( 𝐵𝑊 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 )
6 2 5 syl ( 𝜑 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 )
7 inidm ( 𝐴𝐴 ) = 𝐴
8 fvconst2g ( ( 𝐵𝑊𝑋𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 )
9 2 8 sylan ( ( 𝜑𝑋𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 )
10 3 6 1 1 7 4 9 ofval ( ( 𝜑𝑋𝐴 ) → ( ( 𝐹f 𝑅 ( 𝐴 × { 𝐵 } ) ) ‘ 𝑋 ) = ( 𝐶 𝑅 𝐵 ) )