| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islfld.v |
|
| 2 |
|
islfld.a |
|
| 3 |
|
islfld.d |
|
| 4 |
|
islfld.s |
|
| 5 |
|
islfld.k |
|
| 6 |
|
islfld.p |
|
| 7 |
|
islfld.t |
|
| 8 |
|
islfld.f |
|
| 9 |
|
islfld.u |
|
| 10 |
|
islfld.l |
|
| 11 |
|
islfld.w |
|
| 12 |
3
|
fveq2d |
|
| 13 |
5 12
|
eqtrd |
|
| 14 |
1 13
|
feq23d |
|
| 15 |
9 14
|
mpbid |
|
| 16 |
10
|
ralrimivvva |
|
| 17 |
4
|
oveqd |
|
| 18 |
|
eqidd |
|
| 19 |
2 17 18
|
oveq123d |
|
| 20 |
19
|
fveq2d |
|
| 21 |
3
|
fveq2d |
|
| 22 |
6 21
|
eqtrd |
|
| 23 |
3
|
fveq2d |
|
| 24 |
7 23
|
eqtrd |
|
| 25 |
24
|
oveqd |
|
| 26 |
|
eqidd |
|
| 27 |
22 25 26
|
oveq123d |
|
| 28 |
20 27
|
eqeq12d |
|
| 29 |
1 28
|
raleqbidv |
|
| 30 |
1 29
|
raleqbidv |
|
| 31 |
13 30
|
raleqbidv |
|
| 32 |
16 31
|
mpbid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
33 34 35 36 37 38 39 40
|
islfl |
|
| 42 |
41
|
biimpar |
|
| 43 |
11 15 32 42
|
syl12anc |
|
| 44 |
43 8
|
eleqtrrd |
|