Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualfvs.f | |
|
ldualfvs.v | |
||
ldualfvs.r | |
||
ldualfvs.k | |
||
ldualfvs.t | |
||
ldualfvs.d | |
||
ldualfvs.s | |
||
ldualfvs.w | |
||
ldualvs.x | |
||
ldualvs.g | |
||
Assertion | ldualvs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | |
|
2 | ldualfvs.v | |
|
3 | ldualfvs.r | |
|
4 | ldualfvs.k | |
|
5 | ldualfvs.t | |
|
6 | ldualfvs.d | |
|
7 | ldualfvs.s | |
|
8 | ldualfvs.w | |
|
9 | ldualvs.x | |
|
10 | ldualvs.g | |
|
11 | eqid | |
|
12 | 1 2 3 4 5 6 7 8 11 | ldualfvs | |
13 | 12 | oveqd | |
14 | sneq | |
|
15 | 14 | xpeq2d | |
16 | 15 | oveq2d | |
17 | oveq1 | |
|
18 | ovex | |
|
19 | 16 17 11 18 | ovmpo | |
20 | 9 10 19 | syl2anc | |
21 | 13 20 | eqtrd | |