Metamath Proof Explorer


Theorem ldualvs

Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f F=LFnlW
ldualfvs.v V=BaseW
ldualfvs.r R=ScalarW
ldualfvs.k K=BaseR
ldualfvs.t ×˙=R
ldualfvs.d D=LDualW
ldualfvs.s ˙=D
ldualfvs.w φWY
ldualvs.x φXK
ldualvs.g φGF
Assertion ldualvs φX˙G=G×˙fV×X

Proof

Step Hyp Ref Expression
1 ldualfvs.f F=LFnlW
2 ldualfvs.v V=BaseW
3 ldualfvs.r R=ScalarW
4 ldualfvs.k K=BaseR
5 ldualfvs.t ×˙=R
6 ldualfvs.d D=LDualW
7 ldualfvs.s ˙=D
8 ldualfvs.w φWY
9 ldualvs.x φXK
10 ldualvs.g φGF
11 eqid kK,fFf×˙fV×k=kK,fFf×˙fV×k
12 1 2 3 4 5 6 7 8 11 ldualfvs φ˙=kK,fFf×˙fV×k
13 12 oveqd φX˙G=XkK,fFf×˙fV×kG
14 sneq k=Xk=X
15 14 xpeq2d k=XV×k=V×X
16 15 oveq2d k=Xf×˙fV×k=f×˙fV×X
17 oveq1 f=Gf×˙fV×X=G×˙fV×X
18 ovex G×˙fV×XV
19 16 17 11 18 ovmpo XKGFXkK,fFf×˙fV×kG=G×˙fV×X
20 9 10 19 syl2anc φXkK,fFf×˙fV×kG=G×˙fV×X
21 13 20 eqtrd φX˙G=G×˙fV×X