Metamath Proof Explorer


Theorem ldualvs

Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f F = LFnl W
ldualfvs.v V = Base W
ldualfvs.r R = Scalar W
ldualfvs.k K = Base R
ldualfvs.t × ˙ = R
ldualfvs.d D = LDual W
ldualfvs.s ˙ = D
ldualfvs.w φ W Y
ldualvs.x φ X K
ldualvs.g φ G F
Assertion ldualvs φ X ˙ G = G × ˙ f V × X

Proof

Step Hyp Ref Expression
1 ldualfvs.f F = LFnl W
2 ldualfvs.v V = Base W
3 ldualfvs.r R = Scalar W
4 ldualfvs.k K = Base R
5 ldualfvs.t × ˙ = R
6 ldualfvs.d D = LDual W
7 ldualfvs.s ˙ = D
8 ldualfvs.w φ W Y
9 ldualvs.x φ X K
10 ldualvs.g φ G F
11 eqid k K , f F f × ˙ f V × k = k K , f F f × ˙ f V × k
12 1 2 3 4 5 6 7 8 11 ldualfvs φ ˙ = k K , f F f × ˙ f V × k
13 12 oveqd φ X ˙ G = X k K , f F f × ˙ f V × k G
14 sneq k = X k = X
15 14 xpeq2d k = X V × k = V × X
16 15 oveq2d k = X f × ˙ f V × k = f × ˙ f V × X
17 oveq1 f = G f × ˙ f V × X = G × ˙ f V × X
18 ovex G × ˙ f V × X V
19 16 17 11 18 ovmpo X K G F X k K , f F f × ˙ f V × k G = G × ˙ f V × X
20 9 10 19 syl2anc φ X k K , f F f × ˙ f V × k G = G × ˙ f V × X
21 13 20 eqtrd φ X ˙ G = G × ˙ f V × X