Description: Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualvsass2.f | |- F = ( LFnl ` W ) |
|
ldualvsass2.r | |- R = ( Scalar ` W ) |
||
ldualvsass2.k | |- K = ( Base ` R ) |
||
ldualvsass2.d | |- D = ( LDual ` W ) |
||
ldualvsass2.q | |- Q = ( Scalar ` D ) |
||
ldualvsass2.t | |- .X. = ( .r ` Q ) |
||
ldualvsass2.s | |- .x. = ( .s ` D ) |
||
ldualvsass2.w | |- ( ph -> W e. LMod ) |
||
ldualvsass2.x | |- ( ph -> X e. K ) |
||
ldualvsass2.y | |- ( ph -> Y e. K ) |
||
ldualvsass2.g | |- ( ph -> G e. F ) |
||
Assertion | ldualvsass2 | |- ( ph -> ( ( X .X. Y ) .x. G ) = ( X .x. ( Y .x. G ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsass2.f | |- F = ( LFnl ` W ) |
|
2 | ldualvsass2.r | |- R = ( Scalar ` W ) |
|
3 | ldualvsass2.k | |- K = ( Base ` R ) |
|
4 | ldualvsass2.d | |- D = ( LDual ` W ) |
|
5 | ldualvsass2.q | |- Q = ( Scalar ` D ) |
|
6 | ldualvsass2.t | |- .X. = ( .r ` Q ) |
|
7 | ldualvsass2.s | |- .x. = ( .s ` D ) |
|
8 | ldualvsass2.w | |- ( ph -> W e. LMod ) |
|
9 | ldualvsass2.x | |- ( ph -> X e. K ) |
|
10 | ldualvsass2.y | |- ( ph -> Y e. K ) |
|
11 | ldualvsass2.g | |- ( ph -> G e. F ) |
|
12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
13 | 2 3 12 4 5 6 8 9 10 | ldualsmul | |- ( ph -> ( X .X. Y ) = ( Y ( .r ` R ) X ) ) |
14 | 13 | oveq1d | |- ( ph -> ( ( X .X. Y ) .x. G ) = ( ( Y ( .r ` R ) X ) .x. G ) ) |
15 | 1 2 3 12 4 7 8 9 10 11 | ldualvsass | |- ( ph -> ( ( Y ( .r ` R ) X ) .x. G ) = ( X .x. ( Y .x. G ) ) ) |
16 | 14 15 | eqtrd | |- ( ph -> ( ( X .X. Y ) .x. G ) = ( X .x. ( Y .x. G ) ) ) |