Metamath Proof Explorer


Theorem ldualvsass2

Description: Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014)

Ref Expression
Hypotheses ldualvsass2.f
|- F = ( LFnl ` W )
ldualvsass2.r
|- R = ( Scalar ` W )
ldualvsass2.k
|- K = ( Base ` R )
ldualvsass2.d
|- D = ( LDual ` W )
ldualvsass2.q
|- Q = ( Scalar ` D )
ldualvsass2.t
|- .X. = ( .r ` Q )
ldualvsass2.s
|- .x. = ( .s ` D )
ldualvsass2.w
|- ( ph -> W e. LMod )
ldualvsass2.x
|- ( ph -> X e. K )
ldualvsass2.y
|- ( ph -> Y e. K )
ldualvsass2.g
|- ( ph -> G e. F )
Assertion ldualvsass2
|- ( ph -> ( ( X .X. Y ) .x. G ) = ( X .x. ( Y .x. G ) ) )

Proof

Step Hyp Ref Expression
1 ldualvsass2.f
 |-  F = ( LFnl ` W )
2 ldualvsass2.r
 |-  R = ( Scalar ` W )
3 ldualvsass2.k
 |-  K = ( Base ` R )
4 ldualvsass2.d
 |-  D = ( LDual ` W )
5 ldualvsass2.q
 |-  Q = ( Scalar ` D )
6 ldualvsass2.t
 |-  .X. = ( .r ` Q )
7 ldualvsass2.s
 |-  .x. = ( .s ` D )
8 ldualvsass2.w
 |-  ( ph -> W e. LMod )
9 ldualvsass2.x
 |-  ( ph -> X e. K )
10 ldualvsass2.y
 |-  ( ph -> Y e. K )
11 ldualvsass2.g
 |-  ( ph -> G e. F )
12 eqid
 |-  ( .r ` R ) = ( .r ` R )
13 2 3 12 4 5 6 8 9 10 ldualsmul
 |-  ( ph -> ( X .X. Y ) = ( Y ( .r ` R ) X ) )
14 13 oveq1d
 |-  ( ph -> ( ( X .X. Y ) .x. G ) = ( ( Y ( .r ` R ) X ) .x. G ) )
15 1 2 3 12 4 7 8 9 10 11 ldualvsass
 |-  ( ph -> ( ( Y ( .r ` R ) X ) .x. G ) = ( X .x. ( Y .x. G ) ) )
16 14 15 eqtrd
 |-  ( ph -> ( ( X .X. Y ) .x. G ) = ( X .x. ( Y .x. G ) ) )