Metamath Proof Explorer


Theorem ldualvsass2

Description: Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014)

Ref Expression
Hypotheses ldualvsass2.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvsass2.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualvsass2.k 𝐾 = ( Base ‘ 𝑅 )
ldualvsass2.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvsass2.q 𝑄 = ( Scalar ‘ 𝐷 )
ldualvsass2.t × = ( .r𝑄 )
ldualvsass2.s · = ( ·𝑠𝐷 )
ldualvsass2.w ( 𝜑𝑊 ∈ LMod )
ldualvsass2.x ( 𝜑𝑋𝐾 )
ldualvsass2.y ( 𝜑𝑌𝐾 )
ldualvsass2.g ( 𝜑𝐺𝐹 )
Assertion ldualvsass2 ( 𝜑 → ( ( 𝑋 × 𝑌 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 ldualvsass2.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualvsass2.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualvsass2.k 𝐾 = ( Base ‘ 𝑅 )
4 ldualvsass2.d 𝐷 = ( LDual ‘ 𝑊 )
5 ldualvsass2.q 𝑄 = ( Scalar ‘ 𝐷 )
6 ldualvsass2.t × = ( .r𝑄 )
7 ldualvsass2.s · = ( ·𝑠𝐷 )
8 ldualvsass2.w ( 𝜑𝑊 ∈ LMod )
9 ldualvsass2.x ( 𝜑𝑋𝐾 )
10 ldualvsass2.y ( 𝜑𝑌𝐾 )
11 ldualvsass2.g ( 𝜑𝐺𝐹 )
12 eqid ( .r𝑅 ) = ( .r𝑅 )
13 2 3 12 4 5 6 8 9 10 ldualsmul ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑌 ( .r𝑅 ) 𝑋 ) )
14 13 oveq1d ( 𝜑 → ( ( 𝑋 × 𝑌 ) · 𝐺 ) = ( ( 𝑌 ( .r𝑅 ) 𝑋 ) · 𝐺 ) )
15 1 2 3 12 4 7 8 9 10 11 ldualvsass ( 𝜑 → ( ( 𝑌 ( .r𝑅 ) 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) )
16 14 15 eqtrd ( 𝜑 → ( ( 𝑋 × 𝑌 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) )