Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsass2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvsass2.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldualvsass2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
ldualvsass2.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
5 |
|
ldualvsass2.q |
⊢ 𝑄 = ( Scalar ‘ 𝐷 ) |
6 |
|
ldualvsass2.t |
⊢ × = ( .r ‘ 𝑄 ) |
7 |
|
ldualvsass2.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
8 |
|
ldualvsass2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
ldualvsass2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
10 |
|
ldualvsass2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
11 |
|
ldualvsass2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
13 |
2 3 12 4 5 6 8 9 10
|
ldualsmul |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑌 ( .r ‘ 𝑅 ) 𝑋 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) · 𝐺 ) = ( ( 𝑌 ( .r ‘ 𝑅 ) 𝑋 ) · 𝐺 ) ) |
15 |
1 2 3 12 4 7 8 9 10 11
|
ldualvsass |
⊢ ( 𝜑 → ( ( 𝑌 ( .r ‘ 𝑅 ) 𝑋 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) ) |
16 |
14 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 × 𝑌 ) · 𝐺 ) = ( 𝑋 · ( 𝑌 · 𝐺 ) ) ) |