Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsdi1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvsdi1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldualvsdi1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
ldualvsdi1.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
5 |
|
ldualvsdi1.p |
⊢ + = ( +g ‘ 𝐷 ) |
6 |
|
ldualvsdi1.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
7 |
|
ldualvsdi1.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
ldualvsdi1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
9 |
|
ldualvsdi1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
10 |
|
ldualvsdi1.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
13 |
1 11 2 3 12 4 6 7 8 9
|
ldualvs |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) = ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
14 |
1 11 2 3 12 4 6 7 8 10
|
ldualvs |
⊢ ( 𝜑 → ( 𝑋 · 𝐻 ) = ( 𝐻 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐺 ) ∘f ( +g ‘ 𝑅 ) ( 𝑋 · 𝐻 ) ) = ( ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f ( +g ‘ 𝑅 ) ( 𝐻 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
17 |
1 2 3 4 6 7 8 9
|
ldualvscl |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 ) |
18 |
1 2 3 4 6 7 8 10
|
ldualvscl |
⊢ ( 𝜑 → ( 𝑋 · 𝐻 ) ∈ 𝐹 ) |
19 |
1 2 16 4 5 7 17 18
|
ldualvadd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐺 ) + ( 𝑋 · 𝐻 ) ) = ( ( 𝑋 · 𝐺 ) ∘f ( +g ‘ 𝑅 ) ( 𝑋 · 𝐻 ) ) ) |
20 |
1 4 5 7 9 10
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐺 + 𝐻 ) ∈ 𝐹 ) |
21 |
1 11 2 3 12 4 6 7 8 20
|
ldualvs |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐺 + 𝐻 ) ) = ( ( 𝐺 + 𝐻 ) ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
22 |
1 2 16 4 5 7 9 10
|
ldualvadd |
⊢ ( 𝜑 → ( 𝐺 + 𝐻 ) = ( 𝐺 ∘f ( +g ‘ 𝑅 ) 𝐻 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 + 𝐻 ) ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) = ( ( 𝐺 ∘f ( +g ‘ 𝑅 ) 𝐻 ) ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
24 |
11 2 3 16 12 1 7 8 9 10
|
lflvsdi1 |
⊢ ( 𝜑 → ( ( 𝐺 ∘f ( +g ‘ 𝑅 ) 𝐻 ) ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) = ( ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f ( +g ‘ 𝑅 ) ( 𝐻 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) ) |
25 |
21 23 24
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐺 + 𝐻 ) ) = ( ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f ( +g ‘ 𝑅 ) ( 𝐻 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) ) |
26 |
15 19 25
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑋 · ( 𝐺 + 𝐻 ) ) = ( ( 𝑋 · 𝐺 ) + ( 𝑋 · 𝐻 ) ) ) |