Metamath Proof Explorer


Theorem ldualvsdi1

Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvsdi1.f F = LFnl W
ldualvsdi1.r R = Scalar W
ldualvsdi1.k K = Base R
ldualvsdi1.d D = LDual W
ldualvsdi1.p + ˙ = + D
ldualvsdi1.s · ˙ = D
ldualvsdi1.w φ W LMod
ldualvsdi1.x φ X K
ldualvsdi1.g φ G F
ldualvsdi1.h φ H F
Assertion ldualvsdi1 φ X · ˙ G + ˙ H = X · ˙ G + ˙ X · ˙ H

Proof

Step Hyp Ref Expression
1 ldualvsdi1.f F = LFnl W
2 ldualvsdi1.r R = Scalar W
3 ldualvsdi1.k K = Base R
4 ldualvsdi1.d D = LDual W
5 ldualvsdi1.p + ˙ = + D
6 ldualvsdi1.s · ˙ = D
7 ldualvsdi1.w φ W LMod
8 ldualvsdi1.x φ X K
9 ldualvsdi1.g φ G F
10 ldualvsdi1.h φ H F
11 eqid Base W = Base W
12 eqid R = R
13 1 11 2 3 12 4 6 7 8 9 ldualvs φ X · ˙ G = G R f Base W × X
14 1 11 2 3 12 4 6 7 8 10 ldualvs φ X · ˙ H = H R f Base W × X
15 13 14 oveq12d φ X · ˙ G + R f X · ˙ H = G R f Base W × X + R f H R f Base W × X
16 eqid + R = + R
17 1 2 3 4 6 7 8 9 ldualvscl φ X · ˙ G F
18 1 2 3 4 6 7 8 10 ldualvscl φ X · ˙ H F
19 1 2 16 4 5 7 17 18 ldualvadd φ X · ˙ G + ˙ X · ˙ H = X · ˙ G + R f X · ˙ H
20 1 4 5 7 9 10 ldualvaddcl φ G + ˙ H F
21 1 11 2 3 12 4 6 7 8 20 ldualvs φ X · ˙ G + ˙ H = G + ˙ H R f Base W × X
22 1 2 16 4 5 7 9 10 ldualvadd φ G + ˙ H = G + R f H
23 22 oveq1d φ G + ˙ H R f Base W × X = G + R f H R f Base W × X
24 11 2 3 16 12 1 7 8 9 10 lflvsdi1 φ G + R f H R f Base W × X = G R f Base W × X + R f H R f Base W × X
25 21 23 24 3eqtrd φ X · ˙ G + ˙ H = G R f Base W × X + R f H R f Base W × X
26 15 19 25 3eqtr4rd φ X · ˙ G + ˙ H = X · ˙ G + ˙ X · ˙ H