Metamath Proof Explorer


Theorem ldualvsdi2

Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvsdi2.f F = LFnl W
ldualvsdi2.r R = Scalar W
ldualvsdi2.a + ˙ = + R
ldualvsdi2.k K = Base R
ldualvsdi2.d D = LDual W
ldualvsdi2.p ˙ = + D
ldualvsdi2.s · ˙ = D
ldualvsdi2.w φ W LMod
ldualvsdi2.x φ X K
ldualvsdi2.y φ Y K
ldualvsdi2.g φ G F
Assertion ldualvsdi2 φ X + ˙ Y · ˙ G = X · ˙ G ˙ Y · ˙ G

Proof

Step Hyp Ref Expression
1 ldualvsdi2.f F = LFnl W
2 ldualvsdi2.r R = Scalar W
3 ldualvsdi2.a + ˙ = + R
4 ldualvsdi2.k K = Base R
5 ldualvsdi2.d D = LDual W
6 ldualvsdi2.p ˙ = + D
7 ldualvsdi2.s · ˙ = D
8 ldualvsdi2.w φ W LMod
9 ldualvsdi2.x φ X K
10 ldualvsdi2.y φ Y K
11 ldualvsdi2.g φ G F
12 eqid Base W = Base W
13 eqid R = R
14 2 4 3 lmodacl W LMod X K Y K X + ˙ Y K
15 8 9 10 14 syl3anc φ X + ˙ Y K
16 1 12 2 4 13 5 7 8 15 11 ldualvs φ X + ˙ Y · ˙ G = G R f Base W × X + ˙ Y
17 12 2 4 3 13 1 8 9 10 11 lflvsdi2a φ G R f Base W × X + ˙ Y = G R f Base W × X + ˙ f G R f Base W × Y
18 1 2 4 5 7 8 9 11 ldualvscl φ X · ˙ G F
19 1 2 4 5 7 8 10 11 ldualvscl φ Y · ˙ G F
20 1 2 3 5 6 8 18 19 ldualvadd φ X · ˙ G ˙ Y · ˙ G = X · ˙ G + ˙ f Y · ˙ G
21 1 12 2 4 13 5 7 8 9 11 ldualvs φ X · ˙ G = G R f Base W × X
22 1 12 2 4 13 5 7 8 10 11 ldualvs φ Y · ˙ G = G R f Base W × Y
23 21 22 oveq12d φ X · ˙ G + ˙ f Y · ˙ G = G R f Base W × X + ˙ f G R f Base W × Y
24 20 23 eqtr2d φ G R f Base W × X + ˙ f G R f Base W × Y = X · ˙ G ˙ Y · ˙ G
25 16 17 24 3eqtrd φ X + ˙ Y · ˙ G = X · ˙ G ˙ Y · ˙ G