Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsdi2.f |
|- F = ( LFnl ` W ) |
2 |
|
ldualvsdi2.r |
|- R = ( Scalar ` W ) |
3 |
|
ldualvsdi2.a |
|- .+ = ( +g ` R ) |
4 |
|
ldualvsdi2.k |
|- K = ( Base ` R ) |
5 |
|
ldualvsdi2.d |
|- D = ( LDual ` W ) |
6 |
|
ldualvsdi2.p |
|- .+b = ( +g ` D ) |
7 |
|
ldualvsdi2.s |
|- .x. = ( .s ` D ) |
8 |
|
ldualvsdi2.w |
|- ( ph -> W e. LMod ) |
9 |
|
ldualvsdi2.x |
|- ( ph -> X e. K ) |
10 |
|
ldualvsdi2.y |
|- ( ph -> Y e. K ) |
11 |
|
ldualvsdi2.g |
|- ( ph -> G e. F ) |
12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
14 |
2 4 3
|
lmodacl |
|- ( ( W e. LMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |
15 |
8 9 10 14
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. K ) |
16 |
1 12 2 4 13 5 7 8 15 11
|
ldualvs |
|- ( ph -> ( ( X .+ Y ) .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { ( X .+ Y ) } ) ) ) |
17 |
12 2 4 3 13 1 8 9 10 11
|
lflvsdi2a |
|- ( ph -> ( G oF ( .r ` R ) ( ( Base ` W ) X. { ( X .+ Y ) } ) ) = ( ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) oF .+ ( G oF ( .r ` R ) ( ( Base ` W ) X. { Y } ) ) ) ) |
18 |
1 2 4 5 7 8 9 11
|
ldualvscl |
|- ( ph -> ( X .x. G ) e. F ) |
19 |
1 2 4 5 7 8 10 11
|
ldualvscl |
|- ( ph -> ( Y .x. G ) e. F ) |
20 |
1 2 3 5 6 8 18 19
|
ldualvadd |
|- ( ph -> ( ( X .x. G ) .+b ( Y .x. G ) ) = ( ( X .x. G ) oF .+ ( Y .x. G ) ) ) |
21 |
1 12 2 4 13 5 7 8 9 11
|
ldualvs |
|- ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
22 |
1 12 2 4 13 5 7 8 10 11
|
ldualvs |
|- ( ph -> ( Y .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { Y } ) ) ) |
23 |
21 22
|
oveq12d |
|- ( ph -> ( ( X .x. G ) oF .+ ( Y .x. G ) ) = ( ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) oF .+ ( G oF ( .r ` R ) ( ( Base ` W ) X. { Y } ) ) ) ) |
24 |
20 23
|
eqtr2d |
|- ( ph -> ( ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) oF .+ ( G oF ( .r ` R ) ( ( Base ` W ) X. { Y } ) ) ) = ( ( X .x. G ) .+b ( Y .x. G ) ) ) |
25 |
16 17 24
|
3eqtrd |
|- ( ph -> ( ( X .+ Y ) .x. G ) = ( ( X .x. G ) .+b ( Y .x. G ) ) ) |