Step |
Hyp |
Ref |
Expression |
1 |
|
ldualgrp.d |
|- D = ( LDual ` W ) |
2 |
|
ldualgrp.w |
|- ( ph -> W e. LMod ) |
3 |
|
ldualgrp.v |
|- V = ( Base ` W ) |
4 |
|
ldualgrp.p |
|- .+ = oF ( +g ` W ) |
5 |
|
ldualgrp.f |
|- F = ( LFnl ` W ) |
6 |
|
ldualgrp.r |
|- R = ( Scalar ` W ) |
7 |
|
ldualgrp.k |
|- K = ( Base ` R ) |
8 |
|
ldualgrp.t |
|- .X. = ( .r ` R ) |
9 |
|
ldualgrp.o |
|- O = ( oppR ` R ) |
10 |
|
ldualgrp.s |
|- .x. = ( .s ` D ) |
11 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
12 |
5 1 11 2
|
ldualvbase |
|- ( ph -> ( Base ` D ) = F ) |
13 |
12
|
eqcomd |
|- ( ph -> F = ( Base ` D ) ) |
14 |
|
eqidd |
|- ( ph -> ( +g ` D ) = ( +g ` D ) ) |
15 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
16 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. F /\ y e. F ) -> W e. LMod ) |
17 |
|
simp2 |
|- ( ( ph /\ x e. F /\ y e. F ) -> x e. F ) |
18 |
|
simp3 |
|- ( ( ph /\ x e. F /\ y e. F ) -> y e. F ) |
19 |
5 1 15 16 17 18
|
ldualvaddcl |
|- ( ( ph /\ x e. F /\ y e. F ) -> ( x ( +g ` D ) y ) e. F ) |
20 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
21 |
2
|
adantr |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> W e. LMod ) |
22 |
|
simpr2 |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> y e. F ) |
23 |
|
simpr3 |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> z e. F ) |
24 |
5 6 20 1 15 21 22 23
|
ldualvadd |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( y ( +g ` D ) z ) = ( y oF ( +g ` R ) z ) ) |
25 |
24
|
oveq2d |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( x oF ( +g ` R ) ( y ( +g ` D ) z ) ) = ( x oF ( +g ` R ) ( y oF ( +g ` R ) z ) ) ) |
26 |
|
simpr1 |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> x e. F ) |
27 |
5 1 15 21 22 23
|
ldualvaddcl |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( y ( +g ` D ) z ) e. F ) |
28 |
5 6 20 1 15 21 26 27
|
ldualvadd |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( x ( +g ` D ) ( y ( +g ` D ) z ) ) = ( x oF ( +g ` R ) ( y ( +g ` D ) z ) ) ) |
29 |
5 1 15 21 26 22
|
ldualvaddcl |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( x ( +g ` D ) y ) e. F ) |
30 |
5 6 20 1 15 21 29 23
|
ldualvadd |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( ( x ( +g ` D ) y ) ( +g ` D ) z ) = ( ( x ( +g ` D ) y ) oF ( +g ` R ) z ) ) |
31 |
5 6 20 1 15 21 26 22
|
ldualvadd |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( x ( +g ` D ) y ) = ( x oF ( +g ` R ) y ) ) |
32 |
31
|
oveq1d |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( ( x ( +g ` D ) y ) oF ( +g ` R ) z ) = ( ( x oF ( +g ` R ) y ) oF ( +g ` R ) z ) ) |
33 |
6 20 5 21 26 22 23
|
lfladdass |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( ( x oF ( +g ` R ) y ) oF ( +g ` R ) z ) = ( x oF ( +g ` R ) ( y oF ( +g ` R ) z ) ) ) |
34 |
30 32 33
|
3eqtrd |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( ( x ( +g ` D ) y ) ( +g ` D ) z ) = ( x oF ( +g ` R ) ( y oF ( +g ` R ) z ) ) ) |
35 |
25 28 34
|
3eqtr4rd |
|- ( ( ph /\ ( x e. F /\ y e. F /\ z e. F ) ) -> ( ( x ( +g ` D ) y ) ( +g ` D ) z ) = ( x ( +g ` D ) ( y ( +g ` D ) z ) ) ) |
36 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
37 |
6 36 3 5
|
lfl0f |
|- ( W e. LMod -> ( V X. { ( 0g ` R ) } ) e. F ) |
38 |
2 37
|
syl |
|- ( ph -> ( V X. { ( 0g ` R ) } ) e. F ) |
39 |
2
|
adantr |
|- ( ( ph /\ x e. F ) -> W e. LMod ) |
40 |
38
|
adantr |
|- ( ( ph /\ x e. F ) -> ( V X. { ( 0g ` R ) } ) e. F ) |
41 |
|
simpr |
|- ( ( ph /\ x e. F ) -> x e. F ) |
42 |
5 6 20 1 15 39 40 41
|
ldualvadd |
|- ( ( ph /\ x e. F ) -> ( ( V X. { ( 0g ` R ) } ) ( +g ` D ) x ) = ( ( V X. { ( 0g ` R ) } ) oF ( +g ` R ) x ) ) |
43 |
3 6 20 36 5 39 41
|
lfladd0l |
|- ( ( ph /\ x e. F ) -> ( ( V X. { ( 0g ` R ) } ) oF ( +g ` R ) x ) = x ) |
44 |
42 43
|
eqtrd |
|- ( ( ph /\ x e. F ) -> ( ( V X. { ( 0g ` R ) } ) ( +g ` D ) x ) = x ) |
45 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
46 |
|
eqid |
|- ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) = ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) |
47 |
3 6 45 46 5 39 41
|
lflnegcl |
|- ( ( ph /\ x e. F ) -> ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) e. F ) |
48 |
5 6 20 1 15 39 47 41
|
ldualvadd |
|- ( ( ph /\ x e. F ) -> ( ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) ( +g ` D ) x ) = ( ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) oF ( +g ` R ) x ) ) |
49 |
3 6 45 46 5 39 41 20 36
|
lflnegl |
|- ( ( ph /\ x e. F ) -> ( ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) oF ( +g ` R ) x ) = ( V X. { ( 0g ` R ) } ) ) |
50 |
48 49
|
eqtrd |
|- ( ( ph /\ x e. F ) -> ( ( z e. V |-> ( ( invg ` R ) ` ( x ` z ) ) ) ( +g ` D ) x ) = ( V X. { ( 0g ` R ) } ) ) |
51 |
13 14 19 35 38 44 47 50
|
isgrpd |
|- ( ph -> D e. Grp ) |