Step |
Hyp |
Ref |
Expression |
1 |
|
ldualgrp.d |
|
2 |
|
ldualgrp.w |
|
3 |
|
ldualgrp.v |
|
4 |
|
ldualgrp.p |
|
5 |
|
ldualgrp.f |
|
6 |
|
ldualgrp.r |
|
7 |
|
ldualgrp.k |
|
8 |
|
ldualgrp.t |
|
9 |
|
ldualgrp.o |
|
10 |
|
ldualgrp.s |
|
11 |
|
eqid |
|
12 |
5 1 11 2
|
ldualvbase |
|
13 |
12
|
eqcomd |
|
14 |
|
eqidd |
|
15 |
|
eqid |
|
16 |
2
|
3ad2ant1 |
|
17 |
|
simp2 |
|
18 |
|
simp3 |
|
19 |
5 1 15 16 17 18
|
ldualvaddcl |
|
20 |
|
eqid |
|
21 |
2
|
adantr |
|
22 |
|
simpr2 |
|
23 |
|
simpr3 |
|
24 |
5 6 20 1 15 21 22 23
|
ldualvadd |
|
25 |
24
|
oveq2d |
|
26 |
|
simpr1 |
|
27 |
5 1 15 21 22 23
|
ldualvaddcl |
|
28 |
5 6 20 1 15 21 26 27
|
ldualvadd |
|
29 |
5 1 15 21 26 22
|
ldualvaddcl |
|
30 |
5 6 20 1 15 21 29 23
|
ldualvadd |
|
31 |
5 6 20 1 15 21 26 22
|
ldualvadd |
|
32 |
31
|
oveq1d |
|
33 |
6 20 5 21 26 22 23
|
lfladdass |
|
34 |
30 32 33
|
3eqtrd |
|
35 |
25 28 34
|
3eqtr4rd |
|
36 |
|
eqid |
|
37 |
6 36 3 5
|
lfl0f |
|
38 |
2 37
|
syl |
|
39 |
2
|
adantr |
|
40 |
38
|
adantr |
|
41 |
|
simpr |
|
42 |
5 6 20 1 15 39 40 41
|
ldualvadd |
|
43 |
3 6 20 36 5 39 41
|
lfladd0l |
|
44 |
42 43
|
eqtrd |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
3 6 45 46 5 39 41
|
lflnegcl |
|
48 |
5 6 20 1 15 39 47 41
|
ldualvadd |
|
49 |
3 6 45 46 5 39 41 20 36
|
lflnegl |
|
50 |
48 49
|
eqtrd |
|
51 |
13 14 19 35 38 44 47 50
|
isgrpd |
|