Metamath Proof Explorer


Theorem ldualgrplem

Description: Lemma for ldualgrp . (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses ldualgrp.d D = LDual W
ldualgrp.w φ W LMod
ldualgrp.v V = Base W
ldualgrp.p + ˙ = f + W
ldualgrp.f F = LFnl W
ldualgrp.r R = Scalar W
ldualgrp.k K = Base R
ldualgrp.t × ˙ = R
ldualgrp.o O = opp r R
ldualgrp.s · ˙ = D
Assertion ldualgrplem φ D Grp

Proof

Step Hyp Ref Expression
1 ldualgrp.d D = LDual W
2 ldualgrp.w φ W LMod
3 ldualgrp.v V = Base W
4 ldualgrp.p + ˙ = f + W
5 ldualgrp.f F = LFnl W
6 ldualgrp.r R = Scalar W
7 ldualgrp.k K = Base R
8 ldualgrp.t × ˙ = R
9 ldualgrp.o O = opp r R
10 ldualgrp.s · ˙ = D
11 eqid Base D = Base D
12 5 1 11 2 ldualvbase φ Base D = F
13 12 eqcomd φ F = Base D
14 eqidd φ + D = + D
15 eqid + D = + D
16 2 3ad2ant1 φ x F y F W LMod
17 simp2 φ x F y F x F
18 simp3 φ x F y F y F
19 5 1 15 16 17 18 ldualvaddcl φ x F y F x + D y F
20 eqid + R = + R
21 2 adantr φ x F y F z F W LMod
22 simpr2 φ x F y F z F y F
23 simpr3 φ x F y F z F z F
24 5 6 20 1 15 21 22 23 ldualvadd φ x F y F z F y + D z = y + R f z
25 24 oveq2d φ x F y F z F x + R f y + D z = x + R f y + R f z
26 simpr1 φ x F y F z F x F
27 5 1 15 21 22 23 ldualvaddcl φ x F y F z F y + D z F
28 5 6 20 1 15 21 26 27 ldualvadd φ x F y F z F x + D y + D z = x + R f y + D z
29 5 1 15 21 26 22 ldualvaddcl φ x F y F z F x + D y F
30 5 6 20 1 15 21 29 23 ldualvadd φ x F y F z F x + D y + D z = x + D y + R f z
31 5 6 20 1 15 21 26 22 ldualvadd φ x F y F z F x + D y = x + R f y
32 31 oveq1d φ x F y F z F x + D y + R f z = x + R f y + R f z
33 6 20 5 21 26 22 23 lfladdass φ x F y F z F x + R f y + R f z = x + R f y + R f z
34 30 32 33 3eqtrd φ x F y F z F x + D y + D z = x + R f y + R f z
35 25 28 34 3eqtr4rd φ x F y F z F x + D y + D z = x + D y + D z
36 eqid 0 R = 0 R
37 6 36 3 5 lfl0f W LMod V × 0 R F
38 2 37 syl φ V × 0 R F
39 2 adantr φ x F W LMod
40 38 adantr φ x F V × 0 R F
41 simpr φ x F x F
42 5 6 20 1 15 39 40 41 ldualvadd φ x F V × 0 R + D x = V × 0 R + R f x
43 3 6 20 36 5 39 41 lfladd0l φ x F V × 0 R + R f x = x
44 42 43 eqtrd φ x F V × 0 R + D x = x
45 eqid inv g R = inv g R
46 eqid z V inv g R x z = z V inv g R x z
47 3 6 45 46 5 39 41 lflnegcl φ x F z V inv g R x z F
48 5 6 20 1 15 39 47 41 ldualvadd φ x F z V inv g R x z + D x = z V inv g R x z + R f x
49 3 6 45 46 5 39 41 20 36 lflnegl φ x F z V inv g R x z + R f x = V × 0 R
50 48 49 eqtrd φ x F z V inv g R x z + D x = V × 0 R
51 13 14 19 35 38 44 47 50 isgrpd φ D Grp