| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualgrp.d |
|
| 2 |
|
ldualgrp.w |
|
| 3 |
|
ldualgrp.v |
|
| 4 |
|
ldualgrp.p |
|
| 5 |
|
ldualgrp.f |
|
| 6 |
|
ldualgrp.r |
|
| 7 |
|
ldualgrp.k |
|
| 8 |
|
ldualgrp.t |
|
| 9 |
|
ldualgrp.o |
|
| 10 |
|
ldualgrp.s |
|
| 11 |
|
eqid |
|
| 12 |
5 1 11 2
|
ldualvbase |
|
| 13 |
12
|
eqcomd |
|
| 14 |
|
eqidd |
|
| 15 |
|
eqid |
|
| 16 |
2
|
3ad2ant1 |
|
| 17 |
|
simp2 |
|
| 18 |
|
simp3 |
|
| 19 |
5 1 15 16 17 18
|
ldualvaddcl |
|
| 20 |
|
eqid |
|
| 21 |
2
|
adantr |
|
| 22 |
|
simpr2 |
|
| 23 |
|
simpr3 |
|
| 24 |
5 6 20 1 15 21 22 23
|
ldualvadd |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
simpr1 |
|
| 27 |
5 1 15 21 22 23
|
ldualvaddcl |
|
| 28 |
5 6 20 1 15 21 26 27
|
ldualvadd |
|
| 29 |
5 1 15 21 26 22
|
ldualvaddcl |
|
| 30 |
5 6 20 1 15 21 29 23
|
ldualvadd |
|
| 31 |
5 6 20 1 15 21 26 22
|
ldualvadd |
|
| 32 |
31
|
oveq1d |
|
| 33 |
6 20 5 21 26 22 23
|
lfladdass |
|
| 34 |
30 32 33
|
3eqtrd |
|
| 35 |
25 28 34
|
3eqtr4rd |
|
| 36 |
|
eqid |
|
| 37 |
6 36 3 5
|
lfl0f |
|
| 38 |
2 37
|
syl |
|
| 39 |
2
|
adantr |
|
| 40 |
38
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
5 6 20 1 15 39 40 41
|
ldualvadd |
|
| 43 |
3 6 20 36 5 39 41
|
lfladd0l |
|
| 44 |
42 43
|
eqtrd |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
3 6 45 46 5 39 41
|
lflnegcl |
|
| 48 |
5 6 20 1 15 39 47 41
|
ldualvadd |
|
| 49 |
3 6 45 46 5 39 41 20 36
|
lflnegl |
|
| 50 |
48 49
|
eqtrd |
|
| 51 |
13 14 19 35 38 44 47 50
|
isgrpd |
|