Metamath Proof Explorer


Theorem lfladd0l

Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfladd0l.v V = Base W
lfladd0l.r R = Scalar W
lfladd0l.p + ˙ = + R
lfladd0l.o 0 ˙ = 0 R
lfladd0l.f F = LFnl W
lfladd0l.w φ W LMod
lfladd0l.g φ G F
Assertion lfladd0l φ V × 0 ˙ + ˙ f G = G

Proof

Step Hyp Ref Expression
1 lfladd0l.v V = Base W
2 lfladd0l.r R = Scalar W
3 lfladd0l.p + ˙ = + R
4 lfladd0l.o 0 ˙ = 0 R
5 lfladd0l.f F = LFnl W
6 lfladd0l.w φ W LMod
7 lfladd0l.g φ G F
8 1 fvexi V V
9 8 a1i φ V V
10 eqid Base R = Base R
11 2 10 1 5 lflf W LMod G F G : V Base R
12 6 7 11 syl2anc φ G : V Base R
13 4 fvexi 0 ˙ V
14 13 a1i φ 0 ˙ V
15 2 lmodring W LMod R Ring
16 ringgrp R Ring R Grp
17 6 15 16 3syl φ R Grp
18 10 3 4 grplid R Grp k Base R 0 ˙ + ˙ k = k
19 17 18 sylan φ k Base R 0 ˙ + ˙ k = k
20 9 12 14 19 caofid0l φ V × 0 ˙ + ˙ f G = G