Metamath Proof Explorer


Theorem lfladd0l

Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfladd0l.v 𝑉 = ( Base ‘ 𝑊 )
lfladd0l.r 𝑅 = ( Scalar ‘ 𝑊 )
lfladd0l.p + = ( +g𝑅 )
lfladd0l.o 0 = ( 0g𝑅 )
lfladd0l.f 𝐹 = ( LFnl ‘ 𝑊 )
lfladd0l.w ( 𝜑𝑊 ∈ LMod )
lfladd0l.g ( 𝜑𝐺𝐹 )
Assertion lfladd0l ( 𝜑 → ( ( 𝑉 × { 0 } ) ∘f + 𝐺 ) = 𝐺 )

Proof

Step Hyp Ref Expression
1 lfladd0l.v 𝑉 = ( Base ‘ 𝑊 )
2 lfladd0l.r 𝑅 = ( Scalar ‘ 𝑊 )
3 lfladd0l.p + = ( +g𝑅 )
4 lfladd0l.o 0 = ( 0g𝑅 )
5 lfladd0l.f 𝐹 = ( LFnl ‘ 𝑊 )
6 lfladd0l.w ( 𝜑𝑊 ∈ LMod )
7 lfladd0l.g ( 𝜑𝐺𝐹 )
8 1 fvexi 𝑉 ∈ V
9 8 a1i ( 𝜑𝑉 ∈ V )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 2 10 1 5 lflf ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) )
12 6 7 11 syl2anc ( 𝜑𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) )
13 4 fvexi 0 ∈ V
14 13 a1i ( 𝜑0 ∈ V )
15 2 lmodring ( 𝑊 ∈ LMod → 𝑅 ∈ Ring )
16 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
17 6 15 16 3syl ( 𝜑𝑅 ∈ Grp )
18 10 3 4 grplid ( ( 𝑅 ∈ Grp ∧ 𝑘 ∈ ( Base ‘ 𝑅 ) ) → ( 0 + 𝑘 ) = 𝑘 )
19 17 18 sylan ( ( 𝜑𝑘 ∈ ( Base ‘ 𝑅 ) ) → ( 0 + 𝑘 ) = 𝑘 )
20 9 12 14 19 caofid0l ( 𝜑 → ( ( 𝑉 × { 0 } ) ∘f + 𝐺 ) = 𝐺 )