| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflnegcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lflnegcl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lflnegcl.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
| 4 |
|
lflnegcl.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 5 |
|
lflnegcl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 6 |
|
lflnegcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
lflnegcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 8 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Ring ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ Grp ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝐺 ∈ 𝐹 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
2 16 1 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
13 14 15 17
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 19 |
16 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
12 18 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
20 4
|
fmptd |
⊢ ( 𝜑 → 𝑁 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ) |
| 22 |
|
ringabl |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) |
| 23 |
9 22
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Abel ) |
| 25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 26 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑘 ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝐺 ∈ 𝐹 ) |
| 29 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
| 30 |
2 16 1 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
27 28 29 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 33 |
16 32
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
25 26 31 33
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 35 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
| 36 |
2 16 1 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
27 28 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 39 |
16 38 3
|
ablinvadd |
⊢ ( ( 𝑅 ∈ Abel ∧ ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ‘ ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝐼 ‘ ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 40 |
24 34 37 39
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐼 ‘ ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝐼 ‘ ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 41 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 42 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 43 |
1 41 2 42 16 38 32 5
|
lfli |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 44 |
27 28 26 29 35 43
|
syl113anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑧 ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐼 ‘ ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) = ( 𝐼 ‘ ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 46 |
16 32 3 25 26 31
|
ringmneg2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) = ( 𝐼 ‘ ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝐼 ‘ ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 48 |
40 45 47
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐼 ‘ ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 49 |
1 2 42 16
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 50 |
27 26 29 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
| 51 |
1 41
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 52 |
27 50 35 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 53 |
|
2fveq3 |
⊢ ( 𝑥 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 54 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ∈ V |
| 55 |
53 4 54
|
fvmpt |
⊢ ( ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 → ( 𝑁 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( 𝐼 ‘ ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 56 |
52 55
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑁 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( 𝐼 ‘ ( 𝐺 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 57 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 58 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ V |
| 59 |
57 4 58
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑉 → ( 𝑁 ‘ 𝑦 ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 60 |
29 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑁 ‘ 𝑦 ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑘 ( .r ‘ 𝑅 ) ( 𝑁 ‘ 𝑦 ) ) = ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 62 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑧 → ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
| 63 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ V |
| 64 |
62 4 63
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑉 → ( 𝑁 ‘ 𝑧 ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
| 65 |
35 64
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑁 ‘ 𝑧 ) = ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
| 66 |
61 65
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝑁 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐼 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 67 |
48 56 66
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑁 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝑁 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑧 ) ) ) |
| 68 |
67
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑁 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝑁 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑧 ) ) ) |
| 69 |
1 41 2 42 16 38 32 5
|
islfl |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ∈ 𝐹 ↔ ( 𝑁 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑘 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑁 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝑁 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑧 ) ) ) ) ) |
| 70 |
6 69
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝐹 ↔ ( 𝑁 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑘 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑁 ‘ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑘 ( .r ‘ 𝑅 ) ( 𝑁 ‘ 𝑦 ) ) ( +g ‘ 𝑅 ) ( 𝑁 ‘ 𝑧 ) ) ) ) ) |
| 71 |
21 68 70
|
mpbir2and |
⊢ ( 𝜑 → 𝑁 ∈ 𝐹 ) |