Metamath Proof Explorer


Theorem lflnegl

Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp , and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lflnegcl.v 𝑉 = ( Base ‘ 𝑊 )
lflnegcl.r 𝑅 = ( Scalar ‘ 𝑊 )
lflnegcl.i 𝐼 = ( invg𝑅 )
lflnegcl.n 𝑁 = ( 𝑥𝑉 ↦ ( 𝐼 ‘ ( 𝐺𝑥 ) ) )
lflnegcl.f 𝐹 = ( LFnl ‘ 𝑊 )
lflnegcl.w ( 𝜑𝑊 ∈ LMod )
lflnegcl.g ( 𝜑𝐺𝐹 )
lflnegl.p + = ( +g𝑅 )
lflnegl.o 0 = ( 0g𝑅 )
Assertion lflnegl ( 𝜑 → ( 𝑁f + 𝐺 ) = ( 𝑉 × { 0 } ) )

Proof

Step Hyp Ref Expression
1 lflnegcl.v 𝑉 = ( Base ‘ 𝑊 )
2 lflnegcl.r 𝑅 = ( Scalar ‘ 𝑊 )
3 lflnegcl.i 𝐼 = ( invg𝑅 )
4 lflnegcl.n 𝑁 = ( 𝑥𝑉 ↦ ( 𝐼 ‘ ( 𝐺𝑥 ) ) )
5 lflnegcl.f 𝐹 = ( LFnl ‘ 𝑊 )
6 lflnegcl.w ( 𝜑𝑊 ∈ LMod )
7 lflnegcl.g ( 𝜑𝐺𝐹 )
8 lflnegl.p + = ( +g𝑅 )
9 lflnegl.o 0 = ( 0g𝑅 )
10 1 fvexi 𝑉 ∈ V
11 10 a1i ( 𝜑𝑉 ∈ V )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 2 12 1 5 lflf ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) )
14 6 7 13 syl2anc ( 𝜑𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) )
15 9 fvexi 0 ∈ V
16 15 a1i ( 𝜑0 ∈ V )
17 2 lmodring ( 𝑊 ∈ LMod → 𝑅 ∈ Ring )
18 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
19 6 17 18 3syl ( 𝜑𝑅 ∈ Grp )
20 12 3 19 grpinvf1o ( 𝜑𝐼 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) )
21 f1of ( 𝐼 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) → 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
22 20 21 syl ( 𝜑𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
23 4 a1i ( 𝜑𝑁 = ( 𝑥𝑉 ↦ ( 𝐼 ‘ ( 𝐺𝑥 ) ) ) )
24 12 8 9 3 grplinv ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼𝑦 ) + 𝑦 ) = 0 )
25 19 24 sylan ( ( 𝜑𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼𝑦 ) + 𝑦 ) = 0 )
26 11 14 16 22 23 25 caofinvl ( 𝜑 → ( 𝑁f + 𝐺 ) = ( 𝑉 × { 0 } ) )