Step |
Hyp |
Ref |
Expression |
1 |
|
lflnegcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lflnegcl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
lflnegcl.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
4 |
|
lflnegcl.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
5 |
|
lflnegcl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
lflnegcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
lflnegcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
8 |
|
lflnegl.p |
⊢ + = ( +g ‘ 𝑅 ) |
9 |
|
lflnegl.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
10 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
2 12 1 5
|
lflf |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ) |
14 |
6 7 13
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
9
|
fvexi |
⊢ 0 ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
17 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Ring ) |
18 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
19 |
6 17 18
|
3syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
20 |
12 3 19
|
grpinvf1o |
⊢ ( 𝜑 → 𝐼 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ) |
21 |
|
f1of |
⊢ ( 𝐼 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) → 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
23 |
4
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( 𝐼 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
24 |
12 8 9 3
|
grplinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 𝑦 ) + 𝑦 ) = 0 ) |
25 |
19 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 𝑦 ) + 𝑦 ) = 0 ) |
26 |
11 14 16 22 23 25
|
caofinvl |
⊢ ( 𝜑 → ( 𝑁 ∘f + 𝐺 ) = ( 𝑉 × { 0 } ) ) |