Metamath Proof Explorer


Theorem grpinvf1o

Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grpinvinv.b 𝐵 = ( Base ‘ 𝐺 )
grpinvinv.n 𝑁 = ( invg𝐺 )
grpinv11.g ( 𝜑𝐺 ∈ Grp )
Assertion grpinvf1o ( 𝜑𝑁 : 𝐵1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 grpinvinv.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvinv.n 𝑁 = ( invg𝐺 )
3 grpinv11.g ( 𝜑𝐺 ∈ Grp )
4 1 2 grpinvf ( 𝐺 ∈ Grp → 𝑁 : 𝐵𝐵 )
5 3 4 syl ( 𝜑𝑁 : 𝐵𝐵 )
6 5 ffnd ( 𝜑𝑁 Fn 𝐵 )
7 1 2 grpinvcnv ( 𝐺 ∈ Grp → 𝑁 = 𝑁 )
8 3 7 syl ( 𝜑 𝑁 = 𝑁 )
9 8 fneq1d ( 𝜑 → ( 𝑁 Fn 𝐵𝑁 Fn 𝐵 ) )
10 6 9 mpbird ( 𝜑 𝑁 Fn 𝐵 )
11 dff1o4 ( 𝑁 : 𝐵1-1-onto𝐵 ↔ ( 𝑁 Fn 𝐵 𝑁 Fn 𝐵 ) )
12 6 10 11 sylanbrc ( 𝜑𝑁 : 𝐵1-1-onto𝐵 )