Metamath Proof Explorer
Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014) (Proof shortened by Mario Carneiro, 14-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
grpinvinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
grpinvinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
|
|
grpinv11.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
Assertion |
grpinvf1o |
⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinvinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
3 |
|
grpinv11.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
1 2
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝐵 ) |
6 |
5
|
ffnd |
⊢ ( 𝜑 → 𝑁 Fn 𝐵 ) |
7 |
1 2
|
grpinvcnv |
⊢ ( 𝐺 ∈ Grp → ◡ 𝑁 = 𝑁 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ◡ 𝑁 = 𝑁 ) |
9 |
8
|
fneq1d |
⊢ ( 𝜑 → ( ◡ 𝑁 Fn 𝐵 ↔ 𝑁 Fn 𝐵 ) ) |
10 |
6 9
|
mpbird |
⊢ ( 𝜑 → ◡ 𝑁 Fn 𝐵 ) |
11 |
|
dff1o4 |
⊢ ( 𝑁 : 𝐵 –1-1-onto→ 𝐵 ↔ ( 𝑁 Fn 𝐵 ∧ ◡ 𝑁 Fn 𝐵 ) ) |
12 |
6 10 11
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ 𝐵 ) |