Metamath Proof Explorer


Theorem grpinvf1o

Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grpinvinv.b
|- B = ( Base ` G )
grpinvinv.n
|- N = ( invg ` G )
grpinv11.g
|- ( ph -> G e. Grp )
Assertion grpinvf1o
|- ( ph -> N : B -1-1-onto-> B )

Proof

Step Hyp Ref Expression
1 grpinvinv.b
 |-  B = ( Base ` G )
2 grpinvinv.n
 |-  N = ( invg ` G )
3 grpinv11.g
 |-  ( ph -> G e. Grp )
4 1 2 grpinvf
 |-  ( G e. Grp -> N : B --> B )
5 3 4 syl
 |-  ( ph -> N : B --> B )
6 5 ffnd
 |-  ( ph -> N Fn B )
7 1 2 grpinvcnv
 |-  ( G e. Grp -> `' N = N )
8 3 7 syl
 |-  ( ph -> `' N = N )
9 8 fneq1d
 |-  ( ph -> ( `' N Fn B <-> N Fn B ) )
10 6 9 mpbird
 |-  ( ph -> `' N Fn B )
11 dff1o4
 |-  ( N : B -1-1-onto-> B <-> ( N Fn B /\ `' N Fn B ) )
12 6 10 11 sylanbrc
 |-  ( ph -> N : B -1-1-onto-> B )