Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014) (Proof shortened by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvinv.b | |- B = ( Base ` G ) |
|
grpinvinv.n | |- N = ( invg ` G ) |
||
grpinv11.g | |- ( ph -> G e. Grp ) |
||
Assertion | grpinvf1o | |- ( ph -> N : B -1-1-onto-> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvinv.b | |- B = ( Base ` G ) |
|
2 | grpinvinv.n | |- N = ( invg ` G ) |
|
3 | grpinv11.g | |- ( ph -> G e. Grp ) |
|
4 | 1 2 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
5 | 3 4 | syl | |- ( ph -> N : B --> B ) |
6 | 5 | ffnd | |- ( ph -> N Fn B ) |
7 | 1 2 | grpinvcnv | |- ( G e. Grp -> `' N = N ) |
8 | 3 7 | syl | |- ( ph -> `' N = N ) |
9 | 8 | fneq1d | |- ( ph -> ( `' N Fn B <-> N Fn B ) ) |
10 | 6 9 | mpbird | |- ( ph -> `' N Fn B ) |
11 | dff1o4 | |- ( N : B -1-1-onto-> B <-> ( N Fn B /\ `' N Fn B ) ) |
|
12 | 6 10 11 | sylanbrc | |- ( ph -> N : B -1-1-onto-> B ) |