| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvnzcl.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinvnzcl.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
grpinvnzcl.n |
|- N = ( invg ` G ) |
| 4 |
|
fveq2 |
|- ( ( N ` X ) = .0. -> ( N ` ( N ` X ) ) = ( N ` .0. ) ) |
| 5 |
4
|
adantl |
|- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` ( N ` X ) ) = ( N ` .0. ) ) |
| 6 |
1 3
|
grpinvinv |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 7 |
6
|
adantr |
|- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` ( N ` X ) ) = X ) |
| 8 |
2 3
|
grpinvid |
|- ( G e. Grp -> ( N ` .0. ) = .0. ) |
| 9 |
8
|
ad2antrr |
|- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> ( N ` .0. ) = .0. ) |
| 10 |
5 7 9
|
3eqtr3d |
|- ( ( ( G e. Grp /\ X e. B ) /\ ( N ` X ) = .0. ) -> X = .0. ) |
| 11 |
10
|
ex |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) = .0. -> X = .0. ) ) |
| 12 |
11
|
necon3d |
|- ( ( G e. Grp /\ X e. B ) -> ( X =/= .0. -> ( N ` X ) =/= .0. ) ) |
| 13 |
12
|
3impia |
|- ( ( G e. Grp /\ X e. B /\ X =/= .0. ) -> ( N ` X ) =/= .0. ) |