| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflnegcl.v |
|- V = ( Base ` W ) |
| 2 |
|
lflnegcl.r |
|- R = ( Scalar ` W ) |
| 3 |
|
lflnegcl.i |
|- I = ( invg ` R ) |
| 4 |
|
lflnegcl.n |
|- N = ( x e. V |-> ( I ` ( G ` x ) ) ) |
| 5 |
|
lflnegcl.f |
|- F = ( LFnl ` W ) |
| 6 |
|
lflnegcl.w |
|- ( ph -> W e. LMod ) |
| 7 |
|
lflnegcl.g |
|- ( ph -> G e. F ) |
| 8 |
|
lflnegl.p |
|- .+ = ( +g ` R ) |
| 9 |
|
lflnegl.o |
|- .0. = ( 0g ` R ) |
| 10 |
1
|
fvexi |
|- V e. _V |
| 11 |
10
|
a1i |
|- ( ph -> V e. _V ) |
| 12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 13 |
2 12 1 5
|
lflf |
|- ( ( W e. LMod /\ G e. F ) -> G : V --> ( Base ` R ) ) |
| 14 |
6 7 13
|
syl2anc |
|- ( ph -> G : V --> ( Base ` R ) ) |
| 15 |
9
|
fvexi |
|- .0. e. _V |
| 16 |
15
|
a1i |
|- ( ph -> .0. e. _V ) |
| 17 |
2
|
lmodring |
|- ( W e. LMod -> R e. Ring ) |
| 18 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 19 |
6 17 18
|
3syl |
|- ( ph -> R e. Grp ) |
| 20 |
12 3 19
|
grpinvf1o |
|- ( ph -> I : ( Base ` R ) -1-1-onto-> ( Base ` R ) ) |
| 21 |
|
f1of |
|- ( I : ( Base ` R ) -1-1-onto-> ( Base ` R ) -> I : ( Base ` R ) --> ( Base ` R ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> I : ( Base ` R ) --> ( Base ` R ) ) |
| 23 |
4
|
a1i |
|- ( ph -> N = ( x e. V |-> ( I ` ( G ` x ) ) ) ) |
| 24 |
12 8 9 3
|
grplinv |
|- ( ( R e. Grp /\ y e. ( Base ` R ) ) -> ( ( I ` y ) .+ y ) = .0. ) |
| 25 |
19 24
|
sylan |
|- ( ( ph /\ y e. ( Base ` R ) ) -> ( ( I ` y ) .+ y ) = .0. ) |
| 26 |
11 14 16 22 23 25
|
caofinvl |
|- ( ph -> ( N oF .+ G ) = ( V X. { .0. } ) ) |