Metamath Proof Explorer


Theorem lflnegl

Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp , and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lflnegcl.v
|- V = ( Base ` W )
lflnegcl.r
|- R = ( Scalar ` W )
lflnegcl.i
|- I = ( invg ` R )
lflnegcl.n
|- N = ( x e. V |-> ( I ` ( G ` x ) ) )
lflnegcl.f
|- F = ( LFnl ` W )
lflnegcl.w
|- ( ph -> W e. LMod )
lflnegcl.g
|- ( ph -> G e. F )
lflnegl.p
|- .+ = ( +g ` R )
lflnegl.o
|- .0. = ( 0g ` R )
Assertion lflnegl
|- ( ph -> ( N oF .+ G ) = ( V X. { .0. } ) )

Proof

Step Hyp Ref Expression
1 lflnegcl.v
 |-  V = ( Base ` W )
2 lflnegcl.r
 |-  R = ( Scalar ` W )
3 lflnegcl.i
 |-  I = ( invg ` R )
4 lflnegcl.n
 |-  N = ( x e. V |-> ( I ` ( G ` x ) ) )
5 lflnegcl.f
 |-  F = ( LFnl ` W )
6 lflnegcl.w
 |-  ( ph -> W e. LMod )
7 lflnegcl.g
 |-  ( ph -> G e. F )
8 lflnegl.p
 |-  .+ = ( +g ` R )
9 lflnegl.o
 |-  .0. = ( 0g ` R )
10 1 fvexi
 |-  V e. _V
11 10 a1i
 |-  ( ph -> V e. _V )
12 eqid
 |-  ( Base ` R ) = ( Base ` R )
13 2 12 1 5 lflf
 |-  ( ( W e. LMod /\ G e. F ) -> G : V --> ( Base ` R ) )
14 6 7 13 syl2anc
 |-  ( ph -> G : V --> ( Base ` R ) )
15 9 fvexi
 |-  .0. e. _V
16 15 a1i
 |-  ( ph -> .0. e. _V )
17 2 lmodring
 |-  ( W e. LMod -> R e. Ring )
18 ringgrp
 |-  ( R e. Ring -> R e. Grp )
19 6 17 18 3syl
 |-  ( ph -> R e. Grp )
20 12 3 19 grpinvf1o
 |-  ( ph -> I : ( Base ` R ) -1-1-onto-> ( Base ` R ) )
21 f1of
 |-  ( I : ( Base ` R ) -1-1-onto-> ( Base ` R ) -> I : ( Base ` R ) --> ( Base ` R ) )
22 20 21 syl
 |-  ( ph -> I : ( Base ` R ) --> ( Base ` R ) )
23 4 a1i
 |-  ( ph -> N = ( x e. V |-> ( I ` ( G ` x ) ) ) )
24 12 8 9 3 grplinv
 |-  ( ( R e. Grp /\ y e. ( Base ` R ) ) -> ( ( I ` y ) .+ y ) = .0. )
25 19 24 sylan
 |-  ( ( ph /\ y e. ( Base ` R ) ) -> ( ( I ` y ) .+ y ) = .0. )
26 11 14 16 22 23 25 caofinvl
 |-  ( ph -> ( N oF .+ G ) = ( V X. { .0. } ) )