Step |
Hyp |
Ref |
Expression |
1 |
|
ldualgrp.d |
|- D = ( LDual ` W ) |
2 |
|
ldualgrp.w |
|- ( ph -> W e. LMod ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
|
eqid |
|- oF ( +g ` W ) = oF ( +g ` W ) |
5 |
|
eqid |
|- ( LFnl ` W ) = ( LFnl ` W ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
8 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( oppR ` ( Scalar ` W ) ) = ( oppR ` ( Scalar ` W ) ) |
10 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ldualgrplem |
|- ( ph -> D e. Grp ) |