Metamath Proof Explorer


Theorem ldualgrp

Description: The dual of a vector space is a group. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualgrp.d D=LDualW
ldualgrp.w φWLMod
Assertion ldualgrp φDGrp

Proof

Step Hyp Ref Expression
1 ldualgrp.d D=LDualW
2 ldualgrp.w φWLMod
3 eqid BaseW=BaseW
4 eqid f+W=f+W
5 eqid LFnlW=LFnlW
6 eqid ScalarW=ScalarW
7 eqid BaseScalarW=BaseScalarW
8 eqid ScalarW=ScalarW
9 eqid opprScalarW=opprScalarW
10 eqid D=D
11 1 2 3 4 5 6 7 8 9 10 ldualgrplem φDGrp