Metamath Proof Explorer


Theorem ldual0

Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses ldual0.r R=ScalarW
ldual0.z 0˙=0R
ldual0.d D=LDualW
ldual0.s S=ScalarD
ldual0.o O=0S
ldual0.w φWLMod
Assertion ldual0 φO=0˙

Proof

Step Hyp Ref Expression
1 ldual0.r R=ScalarW
2 ldual0.z 0˙=0R
3 ldual0.d D=LDualW
4 ldual0.s S=ScalarD
5 ldual0.o O=0S
6 ldual0.w φWLMod
7 eqid opprR=opprR
8 1 7 3 4 6 ldualsca φS=opprR
9 8 fveq2d φ0S=0opprR
10 7 2 oppr0 0˙=0opprR
11 9 5 10 3eqtr4g φO=0˙