Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldual0
Next ⟩
ldual1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldual0
Description:
The zero scalar of the dual of a vector space.
(Contributed by
NM
, 28-Dec-2014)
Ref
Expression
Hypotheses
ldual0.r
⊢
R
=
Scalar
⁡
W
ldual0.z
⊢
0
˙
=
0
R
ldual0.d
⊢
D
=
LDual
⁡
W
ldual0.s
⊢
S
=
Scalar
⁡
D
ldual0.o
⊢
O
=
0
S
ldual0.w
⊢
φ
→
W
∈
LMod
Assertion
ldual0
⊢
φ
→
O
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
ldual0.r
⊢
R
=
Scalar
⁡
W
2
ldual0.z
⊢
0
˙
=
0
R
3
ldual0.d
⊢
D
=
LDual
⁡
W
4
ldual0.s
⊢
S
=
Scalar
⁡
D
5
ldual0.o
⊢
O
=
0
S
6
ldual0.w
⊢
φ
→
W
∈
LMod
7
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
8
1
7
3
4
6
ldualsca
⊢
φ
→
S
=
opp
r
⁡
R
9
8
fveq2d
⊢
φ
→
0
S
=
0
opp
r
⁡
R
10
7
2
oppr0
⊢
0
˙
=
0
opp
r
⁡
R
11
9
5
10
3eqtr4g
⊢
φ
→
O
=
0
˙