Metamath Proof Explorer


Theorem ldual0

Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses ldual0.r R = Scalar W
ldual0.z 0 ˙ = 0 R
ldual0.d D = LDual W
ldual0.s S = Scalar D
ldual0.o O = 0 S
ldual0.w φ W LMod
Assertion ldual0 φ O = 0 ˙

Proof

Step Hyp Ref Expression
1 ldual0.r R = Scalar W
2 ldual0.z 0 ˙ = 0 R
3 ldual0.d D = LDual W
4 ldual0.s S = Scalar D
5 ldual0.o O = 0 S
6 ldual0.w φ W LMod
7 eqid opp r R = opp r R
8 1 7 3 4 6 ldualsca φ S = opp r R
9 8 fveq2d φ 0 S = 0 opp r R
10 7 2 oppr0 0 ˙ = 0 opp r R
11 9 5 10 3eqtr4g φ O = 0 ˙