Metamath Proof Explorer


Theorem ldual0

Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses ldual0.r 𝑅 = ( Scalar ‘ 𝑊 )
ldual0.z 0 = ( 0g𝑅 )
ldual0.d 𝐷 = ( LDual ‘ 𝑊 )
ldual0.s 𝑆 = ( Scalar ‘ 𝐷 )
ldual0.o 𝑂 = ( 0g𝑆 )
ldual0.w ( 𝜑𝑊 ∈ LMod )
Assertion ldual0 ( 𝜑𝑂 = 0 )

Proof

Step Hyp Ref Expression
1 ldual0.r 𝑅 = ( Scalar ‘ 𝑊 )
2 ldual0.z 0 = ( 0g𝑅 )
3 ldual0.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldual0.s 𝑆 = ( Scalar ‘ 𝐷 )
5 ldual0.o 𝑂 = ( 0g𝑆 )
6 ldual0.w ( 𝜑𝑊 ∈ LMod )
7 eqid ( oppr𝑅 ) = ( oppr𝑅 )
8 1 7 3 4 6 ldualsca ( 𝜑𝑆 = ( oppr𝑅 ) )
9 8 fveq2d ( 𝜑 → ( 0g𝑆 ) = ( 0g ‘ ( oppr𝑅 ) ) )
10 7 2 oppr0 0 = ( 0g ‘ ( oppr𝑅 ) )
11 9 5 10 3eqtr4g ( 𝜑𝑂 = 0 )