Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldual0.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
| ldual0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ldual0.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | ||
| ldual0.s | ⊢ 𝑆 = ( Scalar ‘ 𝐷 ) | ||
| ldual0.o | ⊢ 𝑂 = ( 0g ‘ 𝑆 ) | ||
| ldual0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| Assertion | ldual0 | ⊢ ( 𝜑 → 𝑂 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldual0.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
| 2 | ldual0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | ldual0.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | |
| 4 | ldual0.s | ⊢ 𝑆 = ( Scalar ‘ 𝐷 ) | |
| 5 | ldual0.o | ⊢ 𝑂 = ( 0g ‘ 𝑆 ) | |
| 6 | ldual0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 8 | 1 7 3 4 6 | ldualsca | ⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝑅 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) ) |
| 10 | 7 2 | oppr0 | ⊢ 0 = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 11 | 9 5 10 | 3eqtr4g | ⊢ ( 𝜑 → 𝑂 = 0 ) |