Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldual0.r | |- R = ( Scalar ` W ) |
|
ldual0.z | |- .0. = ( 0g ` R ) |
||
ldual0.d | |- D = ( LDual ` W ) |
||
ldual0.s | |- S = ( Scalar ` D ) |
||
ldual0.o | |- O = ( 0g ` S ) |
||
ldual0.w | |- ( ph -> W e. LMod ) |
||
Assertion | ldual0 | |- ( ph -> O = .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldual0.r | |- R = ( Scalar ` W ) |
|
2 | ldual0.z | |- .0. = ( 0g ` R ) |
|
3 | ldual0.d | |- D = ( LDual ` W ) |
|
4 | ldual0.s | |- S = ( Scalar ` D ) |
|
5 | ldual0.o | |- O = ( 0g ` S ) |
|
6 | ldual0.w | |- ( ph -> W e. LMod ) |
|
7 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
8 | 1 7 3 4 6 | ldualsca | |- ( ph -> S = ( oppR ` R ) ) |
9 | 8 | fveq2d | |- ( ph -> ( 0g ` S ) = ( 0g ` ( oppR ` R ) ) ) |
10 | 7 2 | oppr0 | |- .0. = ( 0g ` ( oppR ` R ) ) |
11 | 9 5 10 | 3eqtr4g | |- ( ph -> O = .0. ) |