Metamath Proof Explorer


Theorem ldual0

Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses ldual0.r
|- R = ( Scalar ` W )
ldual0.z
|- .0. = ( 0g ` R )
ldual0.d
|- D = ( LDual ` W )
ldual0.s
|- S = ( Scalar ` D )
ldual0.o
|- O = ( 0g ` S )
ldual0.w
|- ( ph -> W e. LMod )
Assertion ldual0
|- ( ph -> O = .0. )

Proof

Step Hyp Ref Expression
1 ldual0.r
 |-  R = ( Scalar ` W )
2 ldual0.z
 |-  .0. = ( 0g ` R )
3 ldual0.d
 |-  D = ( LDual ` W )
4 ldual0.s
 |-  S = ( Scalar ` D )
5 ldual0.o
 |-  O = ( 0g ` S )
6 ldual0.w
 |-  ( ph -> W e. LMod )
7 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
8 1 7 3 4 6 ldualsca
 |-  ( ph -> S = ( oppR ` R ) )
9 8 fveq2d
 |-  ( ph -> ( 0g ` S ) = ( 0g ` ( oppR ` R ) ) )
10 7 2 oppr0
 |-  .0. = ( 0g ` ( oppR ` R ) )
11 9 5 10 3eqtr4g
 |-  ( ph -> O = .0. )