Metamath Proof Explorer


Theorem ldual1

Description: The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldual1.r
|- R = ( Scalar ` W )
ldual1.u
|- .1. = ( 1r ` R )
ldual1.d
|- D = ( LDual ` W )
ldual1.s
|- S = ( Scalar ` D )
ldual1.i
|- I = ( 1r ` S )
ldual1.w
|- ( ph -> W e. LMod )
Assertion ldual1
|- ( ph -> I = .1. )

Proof

Step Hyp Ref Expression
1 ldual1.r
 |-  R = ( Scalar ` W )
2 ldual1.u
 |-  .1. = ( 1r ` R )
3 ldual1.d
 |-  D = ( LDual ` W )
4 ldual1.s
 |-  S = ( Scalar ` D )
5 ldual1.i
 |-  I = ( 1r ` S )
6 ldual1.w
 |-  ( ph -> W e. LMod )
7 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
8 1 7 3 4 6 ldualsca
 |-  ( ph -> S = ( oppR ` R ) )
9 8 fveq2d
 |-  ( ph -> ( 1r ` S ) = ( 1r ` ( oppR ` R ) ) )
10 7 2 oppr1
 |-  .1. = ( 1r ` ( oppR ` R ) )
11 9 5 10 3eqtr4g
 |-  ( ph -> I = .1. )