Description: The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldual1.r | |- R = ( Scalar ` W ) |
|
| ldual1.u | |- .1. = ( 1r ` R ) |
||
| ldual1.d | |- D = ( LDual ` W ) |
||
| ldual1.s | |- S = ( Scalar ` D ) |
||
| ldual1.i | |- I = ( 1r ` S ) |
||
| ldual1.w | |- ( ph -> W e. LMod ) |
||
| Assertion | ldual1 | |- ( ph -> I = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldual1.r | |- R = ( Scalar ` W ) |
|
| 2 | ldual1.u | |- .1. = ( 1r ` R ) |
|
| 3 | ldual1.d | |- D = ( LDual ` W ) |
|
| 4 | ldual1.s | |- S = ( Scalar ` D ) |
|
| 5 | ldual1.i | |- I = ( 1r ` S ) |
|
| 6 | ldual1.w | |- ( ph -> W e. LMod ) |
|
| 7 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 8 | 1 7 3 4 6 | ldualsca | |- ( ph -> S = ( oppR ` R ) ) |
| 9 | 8 | fveq2d | |- ( ph -> ( 1r ` S ) = ( 1r ` ( oppR ` R ) ) ) |
| 10 | 7 2 | oppr1 | |- .1. = ( 1r ` ( oppR ` R ) ) |
| 11 | 9 5 10 | 3eqtr4g | |- ( ph -> I = .1. ) |