Description: The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldual1.r | |- R = ( Scalar ` W ) |
|
ldual1.u | |- .1. = ( 1r ` R ) |
||
ldual1.d | |- D = ( LDual ` W ) |
||
ldual1.s | |- S = ( Scalar ` D ) |
||
ldual1.i | |- I = ( 1r ` S ) |
||
ldual1.w | |- ( ph -> W e. LMod ) |
||
Assertion | ldual1 | |- ( ph -> I = .1. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldual1.r | |- R = ( Scalar ` W ) |
|
2 | ldual1.u | |- .1. = ( 1r ` R ) |
|
3 | ldual1.d | |- D = ( LDual ` W ) |
|
4 | ldual1.s | |- S = ( Scalar ` D ) |
|
5 | ldual1.i | |- I = ( 1r ` S ) |
|
6 | ldual1.w | |- ( ph -> W e. LMod ) |
|
7 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
8 | 1 7 3 4 6 | ldualsca | |- ( ph -> S = ( oppR ` R ) ) |
9 | 8 | fveq2d | |- ( ph -> ( 1r ` S ) = ( 1r ` ( oppR ` R ) ) ) |
10 | 7 2 | oppr1 | |- .1. = ( 1r ` ( oppR ` R ) ) |
11 | 9 5 10 | 3eqtr4g | |- ( ph -> I = .1. ) |