Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldualneg.r | |- R = ( Scalar ` W ) |
|
| ldualneg.m | |- M = ( invg ` R ) |
||
| ldualneg.d | |- D = ( LDual ` W ) |
||
| ldualneg.s | |- S = ( Scalar ` D ) |
||
| ldualneg.n | |- N = ( invg ` S ) |
||
| ldualneg.w | |- ( ph -> W e. LMod ) |
||
| Assertion | ldualneg | |- ( ph -> N = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualneg.r | |- R = ( Scalar ` W ) |
|
| 2 | ldualneg.m | |- M = ( invg ` R ) |
|
| 3 | ldualneg.d | |- D = ( LDual ` W ) |
|
| 4 | ldualneg.s | |- S = ( Scalar ` D ) |
|
| 5 | ldualneg.n | |- N = ( invg ` S ) |
|
| 6 | ldualneg.w | |- ( ph -> W e. LMod ) |
|
| 7 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 8 | 1 7 3 4 6 | ldualsca | |- ( ph -> S = ( oppR ` R ) ) |
| 9 | 8 | fveq2d | |- ( ph -> ( invg ` S ) = ( invg ` ( oppR ` R ) ) ) |
| 10 | 7 2 | opprneg | |- M = ( invg ` ( oppR ` R ) ) |
| 11 | 9 5 10 | 3eqtr4g | |- ( ph -> N = M ) |