Metamath Proof Explorer


Theorem ldualneg

Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldualneg.r
|- R = ( Scalar ` W )
ldualneg.m
|- M = ( invg ` R )
ldualneg.d
|- D = ( LDual ` W )
ldualneg.s
|- S = ( Scalar ` D )
ldualneg.n
|- N = ( invg ` S )
ldualneg.w
|- ( ph -> W e. LMod )
Assertion ldualneg
|- ( ph -> N = M )

Proof

Step Hyp Ref Expression
1 ldualneg.r
 |-  R = ( Scalar ` W )
2 ldualneg.m
 |-  M = ( invg ` R )
3 ldualneg.d
 |-  D = ( LDual ` W )
4 ldualneg.s
 |-  S = ( Scalar ` D )
5 ldualneg.n
 |-  N = ( invg ` S )
6 ldualneg.w
 |-  ( ph -> W e. LMod )
7 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
8 1 7 3 4 6 ldualsca
 |-  ( ph -> S = ( oppR ` R ) )
9 8 fveq2d
 |-  ( ph -> ( invg ` S ) = ( invg ` ( oppR ` R ) ) )
10 7 2 opprneg
 |-  M = ( invg ` ( oppR ` R ) )
11 9 5 10 3eqtr4g
 |-  ( ph -> N = M )