Metamath Proof Explorer


Theorem ldualneg

Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldualneg.r R = Scalar W
ldualneg.m M = inv g R
ldualneg.d D = LDual W
ldualneg.s S = Scalar D
ldualneg.n N = inv g S
ldualneg.w φ W LMod
Assertion ldualneg φ N = M

Proof

Step Hyp Ref Expression
1 ldualneg.r R = Scalar W
2 ldualneg.m M = inv g R
3 ldualneg.d D = LDual W
4 ldualneg.s S = Scalar D
5 ldualneg.n N = inv g S
6 ldualneg.w φ W LMod
7 eqid opp r R = opp r R
8 1 7 3 4 6 ldualsca φ S = opp r R
9 8 fveq2d φ inv g S = inv g opp r R
10 7 2 opprneg M = inv g opp r R
11 9 5 10 3eqtr4g φ N = M