Metamath Proof Explorer


Theorem ldualneg

Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldualneg.r R=ScalarW
ldualneg.m M=invgR
ldualneg.d D=LDualW
ldualneg.s S=ScalarD
ldualneg.n N=invgS
ldualneg.w φWLMod
Assertion ldualneg φN=M

Proof

Step Hyp Ref Expression
1 ldualneg.r R=ScalarW
2 ldualneg.m M=invgR
3 ldualneg.d D=LDualW
4 ldualneg.s S=ScalarD
5 ldualneg.n N=invgS
6 ldualneg.w φWLMod
7 eqid opprR=opprR
8 1 7 3 4 6 ldualsca φS=opprR
9 8 fveq2d φinvgS=invgopprR
10 7 2 opprneg M=invgopprR
11 9 5 10 3eqtr4g φN=M