Metamath Proof Explorer


Theorem ldual0v

Description: The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldualv0.v V=BaseW
ldualv0.r R=ScalarW
ldualv0.z 0˙=0R
ldualv0.d D=LDualW
ldualv0.o O=0D
ldualv0.w φWLMod
Assertion ldual0v φO=V×0˙

Proof

Step Hyp Ref Expression
1 ldualv0.v V=BaseW
2 ldualv0.r R=ScalarW
3 ldualv0.z 0˙=0R
4 ldualv0.d D=LDualW
5 ldualv0.o O=0D
6 ldualv0.w φWLMod
7 eqid LFnlW=LFnlW
8 eqid +R=+R
9 eqid +D=+D
10 2 3 1 7 lfl0f WLModV×0˙LFnlW
11 6 10 syl φV×0˙LFnlW
12 7 2 8 4 9 6 11 11 ldualvadd φV×0˙+DV×0˙=V×0˙+RfV×0˙
13 1 2 8 3 7 6 11 lfladd0l φV×0˙+RfV×0˙=V×0˙
14 12 13 eqtrd φV×0˙+DV×0˙=V×0˙
15 4 6 ldualgrp φDGrp
16 eqid BaseD=BaseD
17 7 4 16 6 11 ldualelvbase φV×0˙BaseD
18 16 9 5 grpid DGrpV×0˙BaseDV×0˙+DV×0˙=V×0˙O=V×0˙
19 15 17 18 syl2anc φV×0˙+DV×0˙=V×0˙O=V×0˙
20 14 19 mpbid φO=V×0˙