Metamath Proof Explorer


Theorem ldual0vcl

Description: The dual zero vector is a functional. (Contributed by NM, 5-Mar-2015)

Ref Expression
Hypotheses ldualv0cl.f F=LFnlW
ldualv0cl.d D=LDualW
ldualv0cl.o 0˙=0D
ldualv0cl.w φWLMod
Assertion ldual0vcl φ0˙F

Proof

Step Hyp Ref Expression
1 ldualv0cl.f F=LFnlW
2 ldualv0cl.d D=LDualW
3 ldualv0cl.o 0˙=0D
4 ldualv0cl.w φWLMod
5 eqid BaseW=BaseW
6 eqid ScalarW=ScalarW
7 eqid 0ScalarW=0ScalarW
8 5 6 7 2 3 4 ldual0v φ0˙=BaseW×0ScalarW
9 6 7 5 1 lfl0f WLModBaseW×0ScalarWF
10 4 9 syl φBaseW×0ScalarWF
11 8 10 eqeltrd φ0˙F