Metamath Proof Explorer


Theorem ldual0vcl

Description: The dual zero vector is a functional. (Contributed by NM, 5-Mar-2015)

Ref Expression
Hypotheses ldualv0cl.f
|- F = ( LFnl ` W )
ldualv0cl.d
|- D = ( LDual ` W )
ldualv0cl.o
|- .0. = ( 0g ` D )
ldualv0cl.w
|- ( ph -> W e. LMod )
Assertion ldual0vcl
|- ( ph -> .0. e. F )

Proof

Step Hyp Ref Expression
1 ldualv0cl.f
 |-  F = ( LFnl ` W )
2 ldualv0cl.d
 |-  D = ( LDual ` W )
3 ldualv0cl.o
 |-  .0. = ( 0g ` D )
4 ldualv0cl.w
 |-  ( ph -> W e. LMod )
5 eqid
 |-  ( Base ` W ) = ( Base ` W )
6 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
7 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
8 5 6 7 2 3 4 ldual0v
 |-  ( ph -> .0. = ( ( Base ` W ) X. { ( 0g ` ( Scalar ` W ) ) } ) )
9 6 7 5 1 lfl0f
 |-  ( W e. LMod -> ( ( Base ` W ) X. { ( 0g ` ( Scalar ` W ) ) } ) e. F )
10 4 9 syl
 |-  ( ph -> ( ( Base ` W ) X. { ( 0g ` ( Scalar ` W ) ) } ) e. F )
11 8 10 eqeltrd
 |-  ( ph -> .0. e. F )