Step |
Hyp |
Ref |
Expression |
1 |
|
ldualv0cl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualv0cl.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
3 |
|
ldualv0cl.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
4 |
|
ldualv0cl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
5 6 7 2 3 4
|
ldual0v |
⊢ ( 𝜑 → 0 = ( ( Base ‘ 𝑊 ) × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
9 |
6 7 5 1
|
lfl0f |
⊢ ( 𝑊 ∈ LMod → ( ( Base ‘ 𝑊 ) × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ 𝐹 ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( ( Base ‘ 𝑊 ) × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ 𝐹 ) |
11 |
8 10
|
eqeltrd |
⊢ ( 𝜑 → 0 ∈ 𝐹 ) |