| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lduallmod.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 2 |
|
lduallmod.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 3 |
|
lduallmod.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
lduallmod.p |
⊢ + = ∘f ( +g ‘ 𝑊 ) |
| 5 |
|
lduallmod.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 6 |
|
lduallmod.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 7 |
|
lduallmod.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 8 |
|
lduallmod.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 9 |
|
lduallmod.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 10 |
|
lduallmod.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 12 |
5 1 11 2
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐷 ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
| 16 |
6 9 1 15 2
|
ldualsca |
⊢ ( 𝜑 → ( Scalar ‘ 𝐷 ) = 𝑂 ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝜑 → 𝑂 = ( Scalar ‘ 𝐷 ) ) |
| 18 |
10
|
a1i |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝐷 ) ) |
| 19 |
9 7
|
opprbas |
⊢ 𝐾 = ( Base ‘ 𝑂 ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑂 ) ) |
| 21 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 22 |
9 21
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) ) |
| 24 |
16
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ ( Scalar ‘ 𝐷 ) ) = ( .r ‘ 𝑂 ) ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 26 |
9 25
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) ) |
| 28 |
6
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Ring ) |
| 29 |
9
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
| 30 |
2 28 29
|
3syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
| 31 |
1 2
|
ldualgrp |
⊢ ( 𝜑 → 𝐷 ∈ Grp ) |
| 32 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → 𝑥 ∈ 𝐾 ) |
| 34 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ∈ 𝐹 ) |
| 35 |
5 6 7 1 10 32 33 34
|
ldualvscl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) |
| 36 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
| 37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑊 ∈ LMod ) |
| 38 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐾 ) |
| 39 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐹 ) |
| 40 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑧 ∈ 𝐹 ) |
| 41 |
5 6 7 1 36 10 37 38 39 40
|
ldualvsdi1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑥 · ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝐷 ) ( 𝑥 · 𝑧 ) ) ) |
| 42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑊 ∈ LMod ) |
| 43 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐾 ) |
| 44 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐾 ) |
| 45 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑧 ∈ 𝐹 ) |
| 46 |
5 6 21 7 1 36 10 42 43 44 45
|
ldualvsdi2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝐷 ) ( 𝑦 · 𝑧 ) ) ) |
| 47 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝐷 ) ) = ( .r ‘ ( Scalar ‘ 𝐷 ) ) |
| 48 |
5 6 7 1 15 47 10 42 43 44 45
|
ldualvsass2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝐷 ) ) 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 49 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 50 |
7 25
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
| 51 |
2 28 50
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
| 53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
| 54 |
5 3 6 7 8 1 10 49 52 53
|
ldualvs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 1r ‘ 𝑅 ) · 𝑥 ) = ( 𝑥 ∘f × ( 𝑉 × { ( 1r ‘ 𝑅 ) } ) ) ) |
| 55 |
3 6 5 7 8 25 49 53
|
lfl1sc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∘f × ( 𝑉 × { ( 1r ‘ 𝑅 ) } ) ) = 𝑥 ) |
| 56 |
54 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 1r ‘ 𝑅 ) · 𝑥 ) = 𝑥 ) |
| 57 |
13 14 17 18 20 23 24 27 30 31 35 41 46 48 56
|
islmodd |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |