Step |
Hyp |
Ref |
Expression |
1 |
|
lduallmod.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
2 |
|
lduallmod.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
3 |
|
lduallmod.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
lduallmod.p |
⊢ + = ∘f ( +g ‘ 𝑊 ) |
5 |
|
lduallmod.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
lduallmod.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
7 |
|
lduallmod.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
8 |
|
lduallmod.t |
⊢ × = ( .r ‘ 𝑅 ) |
9 |
|
lduallmod.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
10 |
|
lduallmod.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
12 |
5 1 11 2
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
13 |
12
|
eqcomd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐷 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
16 |
6 9 1 15 2
|
ldualsca |
⊢ ( 𝜑 → ( Scalar ‘ 𝐷 ) = 𝑂 ) |
17 |
16
|
eqcomd |
⊢ ( 𝜑 → 𝑂 = ( Scalar ‘ 𝐷 ) ) |
18 |
10
|
a1i |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝐷 ) ) |
19 |
9 7
|
opprbas |
⊢ 𝐾 = ( Base ‘ 𝑂 ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑂 ) ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
22 |
9 21
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
23 |
22
|
a1i |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) ) |
24 |
16
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ ( Scalar ‘ 𝐷 ) ) = ( .r ‘ 𝑂 ) ) |
25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
26 |
9 25
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) ) |
28 |
6
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Ring ) |
29 |
9
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
30 |
2 28 29
|
3syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
31 |
1 2
|
ldualgrp |
⊢ ( 𝜑 → 𝐷 ∈ Grp ) |
32 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → 𝑥 ∈ 𝐾 ) |
34 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ∈ 𝐹 ) |
35 |
5 6 7 1 10 32 33 34
|
ldualvscl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) |
36 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑊 ∈ LMod ) |
38 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐾 ) |
39 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐹 ) |
40 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑧 ∈ 𝐹 ) |
41 |
5 6 7 1 36 10 37 38 39 40
|
ldualvsdi1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑥 · ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝐷 ) ( 𝑥 · 𝑧 ) ) ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑊 ∈ LMod ) |
43 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐾 ) |
44 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐾 ) |
45 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑧 ∈ 𝐹 ) |
46 |
5 6 21 7 1 36 10 42 43 44 45
|
ldualvsdi2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝐷 ) ( 𝑦 · 𝑧 ) ) ) |
47 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝐷 ) ) = ( .r ‘ ( Scalar ‘ 𝐷 ) ) |
48 |
5 6 7 1 15 47 10 42 43 44 45
|
ldualvsass2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝐷 ) ) 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
49 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
50 |
7 25
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
51 |
2 28 50
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
54 |
5 3 6 7 8 1 10 49 52 53
|
ldualvs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 1r ‘ 𝑅 ) · 𝑥 ) = ( 𝑥 ∘f × ( 𝑉 × { ( 1r ‘ 𝑅 ) } ) ) ) |
55 |
3 6 5 7 8 25 49 53
|
lfl1sc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∘f × ( 𝑉 × { ( 1r ‘ 𝑅 ) } ) ) = 𝑥 ) |
56 |
54 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 1r ‘ 𝑅 ) · 𝑥 ) = 𝑥 ) |
57 |
13 14 17 18 20 23 24 27 30 31 35 41 46 48 56
|
islmodd |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |