Metamath Proof Explorer


Theorem lfl1sc

Description: The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfl1sc.v 𝑉 = ( Base ‘ 𝑊 )
lfl1sc.d 𝐷 = ( Scalar ‘ 𝑊 )
lfl1sc.f 𝐹 = ( LFnl ‘ 𝑊 )
lfl1sc.k 𝐾 = ( Base ‘ 𝐷 )
lfl1sc.t · = ( .r𝐷 )
lfl1sc.i 1 = ( 1r𝐷 )
lfl1sc.w ( 𝜑𝑊 ∈ LMod )
lfl1sc.g ( 𝜑𝐺𝐹 )
Assertion lfl1sc ( 𝜑 → ( 𝐺f · ( 𝑉 × { 1 } ) ) = 𝐺 )

Proof

Step Hyp Ref Expression
1 lfl1sc.v 𝑉 = ( Base ‘ 𝑊 )
2 lfl1sc.d 𝐷 = ( Scalar ‘ 𝑊 )
3 lfl1sc.f 𝐹 = ( LFnl ‘ 𝑊 )
4 lfl1sc.k 𝐾 = ( Base ‘ 𝐷 )
5 lfl1sc.t · = ( .r𝐷 )
6 lfl1sc.i 1 = ( 1r𝐷 )
7 lfl1sc.w ( 𝜑𝑊 ∈ LMod )
8 lfl1sc.g ( 𝜑𝐺𝐹 )
9 1 fvexi 𝑉 ∈ V
10 9 a1i ( 𝜑𝑉 ∈ V )
11 2 4 1 3 lflf ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → 𝐺 : 𝑉𝐾 )
12 7 8 11 syl2anc ( 𝜑𝐺 : 𝑉𝐾 )
13 6 fvexi 1 ∈ V
14 13 a1i ( 𝜑1 ∈ V )
15 2 lmodring ( 𝑊 ∈ LMod → 𝐷 ∈ Ring )
16 7 15 syl ( 𝜑𝐷 ∈ Ring )
17 4 5 6 ringridm ( ( 𝐷 ∈ Ring ∧ 𝑘𝐾 ) → ( 𝑘 · 1 ) = 𝑘 )
18 16 17 sylan ( ( 𝜑𝑘𝐾 ) → ( 𝑘 · 1 ) = 𝑘 )
19 10 12 14 18 caofid0r ( 𝜑 → ( 𝐺f · ( 𝑉 × { 1 } ) ) = 𝐺 )