Step |
Hyp |
Ref |
Expression |
1 |
|
lfl1sc.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lfl1sc.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lfl1sc.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
lfl1sc.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
5 |
|
lfl1sc.t |
⊢ · = ( .r ‘ 𝐷 ) |
6 |
|
lfl1sc.i |
⊢ 1 = ( 1r ‘ 𝐷 ) |
7 |
|
lfl1sc.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
lfl1sc.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
11 |
2 4 1 3
|
lflf |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ 𝐾 ) |
12 |
7 8 11
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ 𝐾 ) |
13 |
6
|
fvexi |
⊢ 1 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → 1 ∈ V ) |
15 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring ) |
16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ Ring ) |
17 |
4 5 6
|
ringridm |
⊢ ( ( 𝐷 ∈ Ring ∧ 𝑘 ∈ 𝐾 ) → ( 𝑘 · 1 ) = 𝑘 ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑘 · 1 ) = 𝑘 ) |
19 |
10 12 14 18
|
caofid0r |
⊢ ( 𝜑 → ( 𝐺 ∘f · ( 𝑉 × { 1 } ) ) = 𝐺 ) |