Metamath Proof Explorer


Theorem ldualvsdi2

Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvsdi2.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualvsdi2.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualvsdi2.a + = ( +g𝑅 )
ldualvsdi2.k 𝐾 = ( Base ‘ 𝑅 )
ldualvsdi2.d 𝐷 = ( LDual ‘ 𝑊 )
ldualvsdi2.p = ( +g𝐷 )
ldualvsdi2.s · = ( ·𝑠𝐷 )
ldualvsdi2.w ( 𝜑𝑊 ∈ LMod )
ldualvsdi2.x ( 𝜑𝑋𝐾 )
ldualvsdi2.y ( 𝜑𝑌𝐾 )
ldualvsdi2.g ( 𝜑𝐺𝐹 )
Assertion ldualvsdi2 ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝐺 ) = ( ( 𝑋 · 𝐺 ) ( 𝑌 · 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 ldualvsdi2.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualvsdi2.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualvsdi2.a + = ( +g𝑅 )
4 ldualvsdi2.k 𝐾 = ( Base ‘ 𝑅 )
5 ldualvsdi2.d 𝐷 = ( LDual ‘ 𝑊 )
6 ldualvsdi2.p = ( +g𝐷 )
7 ldualvsdi2.s · = ( ·𝑠𝐷 )
8 ldualvsdi2.w ( 𝜑𝑊 ∈ LMod )
9 ldualvsdi2.x ( 𝜑𝑋𝐾 )
10 ldualvsdi2.y ( 𝜑𝑌𝐾 )
11 ldualvsdi2.g ( 𝜑𝐺𝐹 )
12 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
13 eqid ( .r𝑅 ) = ( .r𝑅 )
14 2 4 3 lmodacl ( ( 𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )
15 8 9 10 14 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐾 )
16 1 12 2 4 13 5 7 8 15 11 ldualvs ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝐺 ) = ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { ( 𝑋 + 𝑌 ) } ) ) )
17 12 2 4 3 13 1 8 9 10 11 lflvsdi2a ( 𝜑 → ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f + ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) )
18 1 2 4 5 7 8 9 11 ldualvscl ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 )
19 1 2 4 5 7 8 10 11 ldualvscl ( 𝜑 → ( 𝑌 · 𝐺 ) ∈ 𝐹 )
20 1 2 3 5 6 8 18 19 ldualvadd ( 𝜑 → ( ( 𝑋 · 𝐺 ) ( 𝑌 · 𝐺 ) ) = ( ( 𝑋 · 𝐺 ) ∘f + ( 𝑌 · 𝐺 ) ) )
21 1 12 2 4 13 5 7 8 9 11 ldualvs ( 𝜑 → ( 𝑋 · 𝐺 ) = ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) )
22 1 12 2 4 13 5 7 8 10 11 ldualvs ( 𝜑 → ( 𝑌 · 𝐺 ) = ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) )
23 21 22 oveq12d ( 𝜑 → ( ( 𝑋 · 𝐺 ) ∘f + ( 𝑌 · 𝐺 ) ) = ( ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f + ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) )
24 20 23 eqtr2d ( 𝜑 → ( ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f + ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) = ( ( 𝑋 · 𝐺 ) ( 𝑌 · 𝐺 ) ) )
25 16 17 24 3eqtrd ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝐺 ) = ( ( 𝑋 · 𝐺 ) ( 𝑌 · 𝐺 ) ) )