Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsdi2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvsdi2.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldualvsdi2.a |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
ldualvsdi2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
ldualvsdi2.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
6 |
|
ldualvsdi2.p |
⊢ ✚ = ( +g ‘ 𝐷 ) |
7 |
|
ldualvsdi2.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
8 |
|
ldualvsdi2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
ldualvsdi2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
10 |
|
ldualvsdi2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
11 |
|
ldualvsdi2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
14 |
2 4 3
|
lmodacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
15 |
8 9 10 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
16 |
1 12 2 4 13 5 7 8 15 11
|
ldualvs |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝐺 ) = ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { ( 𝑋 + 𝑌 ) } ) ) ) |
17 |
12 2 4 3 13 1 8 9 10 11
|
lflvsdi2a |
⊢ ( 𝜑 → ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f + ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) ) |
18 |
1 2 4 5 7 8 9 11
|
ldualvscl |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝐹 ) |
19 |
1 2 4 5 7 8 10 11
|
ldualvscl |
⊢ ( 𝜑 → ( 𝑌 · 𝐺 ) ∈ 𝐹 ) |
20 |
1 2 3 5 6 8 18 19
|
ldualvadd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐺 ) ✚ ( 𝑌 · 𝐺 ) ) = ( ( 𝑋 · 𝐺 ) ∘f + ( 𝑌 · 𝐺 ) ) ) |
21 |
1 12 2 4 13 5 7 8 9 11
|
ldualvs |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) = ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) |
22 |
1 12 2 4 13 5 7 8 10 11
|
ldualvs |
⊢ ( 𝜑 → ( 𝑌 · 𝐺 ) = ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) |
23 |
21 22
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝐺 ) ∘f + ( 𝑌 · 𝐺 ) ) = ( ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f + ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) ) |
24 |
20 23
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ∘f + ( 𝐺 ∘f ( .r ‘ 𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑌 } ) ) ) = ( ( 𝑋 · 𝐺 ) ✚ ( 𝑌 · 𝐺 ) ) ) |
25 |
16 17 24
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝐺 ) = ( ( 𝑋 · 𝐺 ) ✚ ( 𝑌 · 𝐺 ) ) ) |