| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lfldi.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lfldi.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | lfldi.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | lfldi.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 5 |  | lfldi.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | lfldi.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑊 ) | 
						
							| 7 |  | lfldi.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | lfldi.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐾 ) | 
						
							| 9 |  | lfldi2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐾 ) | 
						
							| 10 |  | lfldi2.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 11 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  𝑉  ∈  V ) | 
						
							| 13 | 12 8 9 | ofc12 | ⊢ ( 𝜑  →  ( ( 𝑉  ×  { 𝑋 } )  ∘f   +  ( 𝑉  ×  { 𝑌 } ) )  =  ( 𝑉  ×  { ( 𝑋  +  𝑌 ) } ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  ∘f   ·  ( ( 𝑉  ×  { 𝑋 } )  ∘f   +  ( 𝑉  ×  { 𝑌 } ) ) )  =  ( 𝐺  ∘f   ·  ( 𝑉  ×  { ( 𝑋  +  𝑌 ) } ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 | lflvsdi2 | ⊢ ( 𝜑  →  ( 𝐺  ∘f   ·  ( ( 𝑉  ×  { 𝑋 } )  ∘f   +  ( 𝑉  ×  { 𝑌 } ) ) )  =  ( ( 𝐺  ∘f   ·  ( 𝑉  ×  { 𝑋 } ) )  ∘f   +  ( 𝐺  ∘f   ·  ( 𝑉  ×  { 𝑌 } ) ) ) ) | 
						
							| 16 | 14 15 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐺  ∘f   ·  ( 𝑉  ×  { ( 𝑋  +  𝑌 ) } ) )  =  ( ( 𝐺  ∘f   ·  ( 𝑉  ×  { 𝑋 } ) )  ∘f   +  ( 𝐺  ∘f   ·  ( 𝑉  ×  { 𝑌 } ) ) ) ) |