Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lfldi.v | |- V = ( Base ` W ) |
|
lfldi.r | |- R = ( Scalar ` W ) |
||
lfldi.k | |- K = ( Base ` R ) |
||
lfldi.p | |- .+ = ( +g ` R ) |
||
lfldi.t | |- .x. = ( .r ` R ) |
||
lfldi.f | |- F = ( LFnl ` W ) |
||
lfldi.w | |- ( ph -> W e. LMod ) |
||
lfldi.x | |- ( ph -> X e. K ) |
||
lfldi2.y | |- ( ph -> Y e. K ) |
||
lfldi2.g | |- ( ph -> G e. F ) |
||
Assertion | lflvsdi2a | |- ( ph -> ( G oF .x. ( V X. { ( X .+ Y ) } ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfldi.v | |- V = ( Base ` W ) |
|
2 | lfldi.r | |- R = ( Scalar ` W ) |
|
3 | lfldi.k | |- K = ( Base ` R ) |
|
4 | lfldi.p | |- .+ = ( +g ` R ) |
|
5 | lfldi.t | |- .x. = ( .r ` R ) |
|
6 | lfldi.f | |- F = ( LFnl ` W ) |
|
7 | lfldi.w | |- ( ph -> W e. LMod ) |
|
8 | lfldi.x | |- ( ph -> X e. K ) |
|
9 | lfldi2.y | |- ( ph -> Y e. K ) |
|
10 | lfldi2.g | |- ( ph -> G e. F ) |
|
11 | 1 | fvexi | |- V e. _V |
12 | 11 | a1i | |- ( ph -> V e. _V ) |
13 | 12 8 9 | ofc12 | |- ( ph -> ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) = ( V X. { ( X .+ Y ) } ) ) |
14 | 13 | oveq2d | |- ( ph -> ( G oF .x. ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) ) = ( G oF .x. ( V X. { ( X .+ Y ) } ) ) ) |
15 | 1 2 3 4 5 6 7 8 9 10 | lflvsdi2 | |- ( ph -> ( G oF .x. ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) ) |
16 | 14 15 | eqtr3d | |- ( ph -> ( G oF .x. ( V X. { ( X .+ Y ) } ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) ) |