Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfldi.v | |- V = ( Base ` W ) | |
| lfldi.r | |- R = ( Scalar ` W ) | ||
| lfldi.k | |- K = ( Base ` R ) | ||
| lfldi.p | |- .+ = ( +g ` R ) | ||
| lfldi.t | |- .x. = ( .r ` R ) | ||
| lfldi.f | |- F = ( LFnl ` W ) | ||
| lfldi.w | |- ( ph -> W e. LMod ) | ||
| lfldi.x | |- ( ph -> X e. K ) | ||
| lfldi2.y | |- ( ph -> Y e. K ) | ||
| lfldi2.g | |- ( ph -> G e. F ) | ||
| Assertion | lflvsdi2a | |- ( ph -> ( G oF .x. ( V X. { ( X .+ Y ) } ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lfldi.v | |- V = ( Base ` W ) | |
| 2 | lfldi.r | |- R = ( Scalar ` W ) | |
| 3 | lfldi.k | |- K = ( Base ` R ) | |
| 4 | lfldi.p | |- .+ = ( +g ` R ) | |
| 5 | lfldi.t | |- .x. = ( .r ` R ) | |
| 6 | lfldi.f | |- F = ( LFnl ` W ) | |
| 7 | lfldi.w | |- ( ph -> W e. LMod ) | |
| 8 | lfldi.x | |- ( ph -> X e. K ) | |
| 9 | lfldi2.y | |- ( ph -> Y e. K ) | |
| 10 | lfldi2.g | |- ( ph -> G e. F ) | |
| 11 | 1 | fvexi | |- V e. _V | 
| 12 | 11 | a1i | |- ( ph -> V e. _V ) | 
| 13 | 12 8 9 | ofc12 |  |-  ( ph -> ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) = ( V X. { ( X .+ Y ) } ) ) | 
| 14 | 13 | oveq2d |  |-  ( ph -> ( G oF .x. ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) ) = ( G oF .x. ( V X. { ( X .+ Y ) } ) ) ) | 
| 15 | 1 2 3 4 5 6 7 8 9 10 | lflvsdi2 |  |-  ( ph -> ( G oF .x. ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) ) | 
| 16 | 14 15 | eqtr3d |  |-  ( ph -> ( G oF .x. ( V X. { ( X .+ Y ) } ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) ) |