Metamath Proof Explorer


Theorem lflvsdi2a

Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfldi.v
|- V = ( Base ` W )
lfldi.r
|- R = ( Scalar ` W )
lfldi.k
|- K = ( Base ` R )
lfldi.p
|- .+ = ( +g ` R )
lfldi.t
|- .x. = ( .r ` R )
lfldi.f
|- F = ( LFnl ` W )
lfldi.w
|- ( ph -> W e. LMod )
lfldi.x
|- ( ph -> X e. K )
lfldi2.y
|- ( ph -> Y e. K )
lfldi2.g
|- ( ph -> G e. F )
Assertion lflvsdi2a
|- ( ph -> ( G oF .x. ( V X. { ( X .+ Y ) } ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) )

Proof

Step Hyp Ref Expression
1 lfldi.v
 |-  V = ( Base ` W )
2 lfldi.r
 |-  R = ( Scalar ` W )
3 lfldi.k
 |-  K = ( Base ` R )
4 lfldi.p
 |-  .+ = ( +g ` R )
5 lfldi.t
 |-  .x. = ( .r ` R )
6 lfldi.f
 |-  F = ( LFnl ` W )
7 lfldi.w
 |-  ( ph -> W e. LMod )
8 lfldi.x
 |-  ( ph -> X e. K )
9 lfldi2.y
 |-  ( ph -> Y e. K )
10 lfldi2.g
 |-  ( ph -> G e. F )
11 1 fvexi
 |-  V e. _V
12 11 a1i
 |-  ( ph -> V e. _V )
13 12 8 9 ofc12
 |-  ( ph -> ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) = ( V X. { ( X .+ Y ) } ) )
14 13 oveq2d
 |-  ( ph -> ( G oF .x. ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) ) = ( G oF .x. ( V X. { ( X .+ Y ) } ) ) )
15 1 2 3 4 5 6 7 8 9 10 lflvsdi2
 |-  ( ph -> ( G oF .x. ( ( V X. { X } ) oF .+ ( V X. { Y } ) ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) )
16 14 15 eqtr3d
 |-  ( ph -> ( G oF .x. ( V X. { ( X .+ Y ) } ) ) = ( ( G oF .x. ( V X. { X } ) ) oF .+ ( G oF .x. ( V X. { Y } ) ) ) )