Metamath Proof Explorer


Theorem ofc12

Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses ofc12.1
|- ( ph -> A e. V )
ofc12.2
|- ( ph -> B e. W )
ofc12.3
|- ( ph -> C e. X )
Assertion ofc12
|- ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( A X. { ( B R C ) } ) )

Proof

Step Hyp Ref Expression
1 ofc12.1
 |-  ( ph -> A e. V )
2 ofc12.2
 |-  ( ph -> B e. W )
3 ofc12.3
 |-  ( ph -> C e. X )
4 2 adantr
 |-  ( ( ph /\ x e. A ) -> B e. W )
5 3 adantr
 |-  ( ( ph /\ x e. A ) -> C e. X )
6 fconstmpt
 |-  ( A X. { B } ) = ( x e. A |-> B )
7 6 a1i
 |-  ( ph -> ( A X. { B } ) = ( x e. A |-> B ) )
8 fconstmpt
 |-  ( A X. { C } ) = ( x e. A |-> C )
9 8 a1i
 |-  ( ph -> ( A X. { C } ) = ( x e. A |-> C ) )
10 1 4 5 7 9 offval2
 |-  ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( x e. A |-> ( B R C ) ) )
11 fconstmpt
 |-  ( A X. { ( B R C ) } ) = ( x e. A |-> ( B R C ) )
12 10 11 eqtr4di
 |-  ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( A X. { ( B R C ) } ) )