Step |
Hyp |
Ref |
Expression |
1 |
|
ofc12.1 |
|- ( ph -> A e. V ) |
2 |
|
ofc12.2 |
|- ( ph -> B e. W ) |
3 |
|
ofc12.3 |
|- ( ph -> C e. X ) |
4 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. W ) |
5 |
3
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. X ) |
6 |
|
fconstmpt |
|- ( A X. { B } ) = ( x e. A |-> B ) |
7 |
6
|
a1i |
|- ( ph -> ( A X. { B } ) = ( x e. A |-> B ) ) |
8 |
|
fconstmpt |
|- ( A X. { C } ) = ( x e. A |-> C ) |
9 |
8
|
a1i |
|- ( ph -> ( A X. { C } ) = ( x e. A |-> C ) ) |
10 |
1 4 5 7 9
|
offval2 |
|- ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( x e. A |-> ( B R C ) ) ) |
11 |
|
fconstmpt |
|- ( A X. { ( B R C ) } ) = ( x e. A |-> ( B R C ) ) |
12 |
10 11
|
eqtr4di |
|- ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( A X. { ( B R C ) } ) ) |