| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualgrp.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 2 |
|
ldualgrp.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 3 |
|
ldualgrp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
ldualgrp.p |
⊢ + = ∘f ( +g ‘ 𝑊 ) |
| 5 |
|
ldualgrp.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 6 |
|
ldualgrp.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 7 |
|
ldualgrp.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 8 |
|
ldualgrp.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 9 |
|
ldualgrp.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 10 |
|
ldualgrp.s |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 12 |
5 1 11 2
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐷 ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
| 16 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 17 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
| 18 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ∈ 𝐹 ) |
| 19 |
5 1 15 16 17 18
|
ldualvaddcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ∈ 𝐹 ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑊 ∈ LMod ) |
| 22 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐹 ) |
| 23 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑧 ∈ 𝐹 ) |
| 24 |
5 6 20 1 15 21 22 23
|
ldualvadd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 26 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐹 ) |
| 27 |
5 1 15 21 22 23
|
ldualvaddcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ∈ 𝐹 ) |
| 28 |
5 6 20 1 15 21 26 27
|
ldualvadd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐷 ) ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ) ) |
| 29 |
5 1 15 21 26 22
|
ldualvaddcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ∈ 𝐹 ) |
| 30 |
5 6 20 1 15 21 29 23
|
ldualvadd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ( +g ‘ 𝐷 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 31 |
5 6 20 1 15 21 26 22
|
ldualvadd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 33 |
6 20 5 21 26 22 23
|
lfladdass |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 34 |
30 32 33
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ( +g ‘ 𝐷 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
| 35 |
25 28 34
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝐷 ) 𝑦 ) ( +g ‘ 𝐷 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐷 ) ( 𝑦 ( +g ‘ 𝐷 ) 𝑧 ) ) ) |
| 36 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 37 |
6 36 3 5
|
lfl0f |
⊢ ( 𝑊 ∈ LMod → ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) |
| 38 |
2 37
|
syl |
⊢ ( 𝜑 → ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) |
| 39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 40 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ∈ 𝐹 ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
| 42 |
5 6 20 1 15 39 40 41
|
ldualvadd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ( +g ‘ 𝐷 ) 𝑥 ) = ( ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ∘f ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 43 |
3 6 20 36 5 39 41
|
lfladd0l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ∘f ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 44 |
42 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ( +g ‘ 𝐷 ) 𝑥 ) = 𝑥 ) |
| 45 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 46 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 47 |
3 6 45 46 5 39 41
|
lflnegcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) ∈ 𝐹 ) |
| 48 |
5 6 20 1 15 39 47 41
|
ldualvadd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) ( +g ‘ 𝐷 ) 𝑥 ) = ( ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) ∘f ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 49 |
3 6 45 46 5 39 41 20 36
|
lflnegl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) ∘f ( +g ‘ 𝑅 ) 𝑥 ) = ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ) |
| 50 |
48 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐹 ) → ( ( 𝑧 ∈ 𝑉 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ‘ 𝑧 ) ) ) ( +g ‘ 𝐷 ) 𝑥 ) = ( 𝑉 × { ( 0g ‘ 𝑅 ) } ) ) |
| 51 |
13 14 19 35 38 44 47 50
|
isgrpd |
⊢ ( 𝜑 → 𝐷 ∈ Grp ) |