Step |
Hyp |
Ref |
Expression |
1 |
|
ldualgrp.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
2 |
|
ldualgrp.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ∘f ( +g ‘ 𝑊 ) = ∘f ( +g ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( oppr ‘ ( Scalar ‘ 𝑊 ) ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ldualgrplem |
⊢ ( 𝜑 → 𝐷 ∈ Grp ) |