| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualgrp.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 2 |
|
ldualgrp.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ∘f ( +g ‘ 𝑊 ) = ∘f ( +g ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 8 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( oppr ‘ ( Scalar ‘ 𝑊 ) ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
ldualgrplem |
⊢ ( 𝜑 → 𝐷 ∈ Grp ) |