Metamath Proof Explorer


Theorem lduallmod

Description: The dual of a left module is also a left module. (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lduallmod.d 𝐷 = ( LDual ‘ 𝑊 )
lduallmod.w ( 𝜑𝑊 ∈ LMod )
Assertion lduallmod ( 𝜑𝐷 ∈ LMod )

Proof

Step Hyp Ref Expression
1 lduallmod.d 𝐷 = ( LDual ‘ 𝑊 )
2 lduallmod.w ( 𝜑𝑊 ∈ LMod )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 eqid f ( +g𝑊 ) = ∘f ( +g𝑊 )
5 eqid ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
8 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
9 eqid ( oppr ‘ ( Scalar ‘ 𝑊 ) ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) )
10 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
11 1 2 3 4 5 6 7 8 9 10 lduallmodlem ( 𝜑𝐷 ∈ LMod )