Step |
Hyp |
Ref |
Expression |
1 |
|
lduallvec.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
2 |
|
lduallvec.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
3 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
1 4
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( oppr ‘ ( Scalar ‘ 𝑊 ) ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
9 |
6 7 1 8 2
|
ldualsca |
⊢ ( 𝜑 → ( Scalar ‘ 𝐷 ) = ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ) |
10 |
6
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
12 |
7
|
opprdrng |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ↔ ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ∈ DivRing ) |
13 |
11 12
|
sylib |
⊢ ( 𝜑 → ( oppr ‘ ( Scalar ‘ 𝑊 ) ) ∈ DivRing ) |
14 |
9 13
|
eqeltrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐷 ) ∈ DivRing ) |
15 |
8
|
islvec |
⊢ ( 𝐷 ∈ LVec ↔ ( 𝐷 ∈ LMod ∧ ( Scalar ‘ 𝐷 ) ∈ DivRing ) ) |
16 |
5 14 15
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 ∈ LVec ) |