Metamath Proof Explorer


Theorem lduallvec

Description: The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr ; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lduallvec.d D = LDual W
lduallvec.w φ W LVec
Assertion lduallvec φ D LVec

Proof

Step Hyp Ref Expression
1 lduallvec.d D = LDual W
2 lduallvec.w φ W LVec
3 lveclmod W LVec W LMod
4 2 3 syl φ W LMod
5 1 4 lduallmod φ D LMod
6 eqid Scalar W = Scalar W
7 eqid opp r Scalar W = opp r Scalar W
8 eqid Scalar D = Scalar D
9 6 7 1 8 2 ldualsca φ Scalar D = opp r Scalar W
10 6 lvecdrng W LVec Scalar W DivRing
11 2 10 syl φ Scalar W DivRing
12 7 opprdrng Scalar W DivRing opp r Scalar W DivRing
13 11 12 sylib φ opp r Scalar W DivRing
14 9 13 eqeltrd φ Scalar D DivRing
15 8 islvec D LVec D LMod Scalar D DivRing
16 5 14 15 sylanbrc φ D LVec