Step |
Hyp |
Ref |
Expression |
1 |
|
lduallvec.d |
|- D = ( LDual ` W ) |
2 |
|
lduallvec.w |
|- ( ph -> W e. LVec ) |
3 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
4 |
2 3
|
syl |
|- ( ph -> W e. LMod ) |
5 |
1 4
|
lduallmod |
|- ( ph -> D e. LMod ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
|
eqid |
|- ( oppR ` ( Scalar ` W ) ) = ( oppR ` ( Scalar ` W ) ) |
8 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
9 |
6 7 1 8 2
|
ldualsca |
|- ( ph -> ( Scalar ` D ) = ( oppR ` ( Scalar ` W ) ) ) |
10 |
6
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
11 |
2 10
|
syl |
|- ( ph -> ( Scalar ` W ) e. DivRing ) |
12 |
7
|
opprdrng |
|- ( ( Scalar ` W ) e. DivRing <-> ( oppR ` ( Scalar ` W ) ) e. DivRing ) |
13 |
11 12
|
sylib |
|- ( ph -> ( oppR ` ( Scalar ` W ) ) e. DivRing ) |
14 |
9 13
|
eqeltrd |
|- ( ph -> ( Scalar ` D ) e. DivRing ) |
15 |
8
|
islvec |
|- ( D e. LVec <-> ( D e. LMod /\ ( Scalar ` D ) e. DivRing ) ) |
16 |
5 14 15
|
sylanbrc |
|- ( ph -> D e. LVec ) |