Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsub.r |
|- R = ( Scalar ` W ) |
2 |
|
ldualvsub.n |
|- N = ( invg ` R ) |
3 |
|
ldualvsub.u |
|- .1. = ( 1r ` R ) |
4 |
|
ldualvsub.f |
|- F = ( LFnl ` W ) |
5 |
|
ldualvsub.d |
|- D = ( LDual ` W ) |
6 |
|
ldualvsub.p |
|- .+ = ( +g ` D ) |
7 |
|
ldualvsub.t |
|- .x. = ( .s ` D ) |
8 |
|
ldualvsub.m |
|- .- = ( -g ` D ) |
9 |
|
ldualvsub.w |
|- ( ph -> W e. LMod ) |
10 |
|
ldualvsub.g |
|- ( ph -> G e. F ) |
11 |
|
ldualvsub.h |
|- ( ph -> H e. F ) |
12 |
5 9
|
lduallmod |
|- ( ph -> D e. LMod ) |
13 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
14 |
4 5 13 9 10
|
ldualelvbase |
|- ( ph -> G e. ( Base ` D ) ) |
15 |
4 5 13 9 11
|
ldualelvbase |
|- ( ph -> H e. ( Base ` D ) ) |
16 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
17 |
|
eqid |
|- ( invg ` ( Scalar ` D ) ) = ( invg ` ( Scalar ` D ) ) |
18 |
|
eqid |
|- ( 1r ` ( Scalar ` D ) ) = ( 1r ` ( Scalar ` D ) ) |
19 |
13 6 8 16 7 17 18
|
lmodvsubval2 |
|- ( ( D e. LMod /\ G e. ( Base ` D ) /\ H e. ( Base ` D ) ) -> ( G .- H ) = ( G .+ ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) ) |
20 |
12 14 15 19
|
syl3anc |
|- ( ph -> ( G .- H ) = ( G .+ ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) ) |
21 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
22 |
21 2
|
opprneg |
|- N = ( invg ` ( oppR ` R ) ) |
23 |
1 21 5 16 9
|
ldualsca |
|- ( ph -> ( Scalar ` D ) = ( oppR ` R ) ) |
24 |
23
|
fveq2d |
|- ( ph -> ( invg ` ( Scalar ` D ) ) = ( invg ` ( oppR ` R ) ) ) |
25 |
22 24
|
eqtr4id |
|- ( ph -> N = ( invg ` ( Scalar ` D ) ) ) |
26 |
21 3
|
oppr1 |
|- .1. = ( 1r ` ( oppR ` R ) ) |
27 |
23
|
fveq2d |
|- ( ph -> ( 1r ` ( Scalar ` D ) ) = ( 1r ` ( oppR ` R ) ) ) |
28 |
26 27
|
eqtr4id |
|- ( ph -> .1. = ( 1r ` ( Scalar ` D ) ) ) |
29 |
25 28
|
fveq12d |
|- ( ph -> ( N ` .1. ) = ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ) |
30 |
29
|
oveq1d |
|- ( ph -> ( ( N ` .1. ) .x. H ) = ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) |
31 |
30
|
oveq2d |
|- ( ph -> ( G .+ ( ( N ` .1. ) .x. H ) ) = ( G .+ ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) ) |
32 |
20 31
|
eqtr4d |
|- ( ph -> ( G .- H ) = ( G .+ ( ( N ` .1. ) .x. H ) ) ) |