| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvsub.r |
|- R = ( Scalar ` W ) |
| 2 |
|
ldualvsub.n |
|- N = ( invg ` R ) |
| 3 |
|
ldualvsub.u |
|- .1. = ( 1r ` R ) |
| 4 |
|
ldualvsub.f |
|- F = ( LFnl ` W ) |
| 5 |
|
ldualvsub.d |
|- D = ( LDual ` W ) |
| 6 |
|
ldualvsub.p |
|- .+ = ( +g ` D ) |
| 7 |
|
ldualvsub.t |
|- .x. = ( .s ` D ) |
| 8 |
|
ldualvsub.m |
|- .- = ( -g ` D ) |
| 9 |
|
ldualvsub.w |
|- ( ph -> W e. LMod ) |
| 10 |
|
ldualvsub.g |
|- ( ph -> G e. F ) |
| 11 |
|
ldualvsub.h |
|- ( ph -> H e. F ) |
| 12 |
5 9
|
lduallmod |
|- ( ph -> D e. LMod ) |
| 13 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 14 |
4 5 13 9 10
|
ldualelvbase |
|- ( ph -> G e. ( Base ` D ) ) |
| 15 |
4 5 13 9 11
|
ldualelvbase |
|- ( ph -> H e. ( Base ` D ) ) |
| 16 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
| 17 |
|
eqid |
|- ( invg ` ( Scalar ` D ) ) = ( invg ` ( Scalar ` D ) ) |
| 18 |
|
eqid |
|- ( 1r ` ( Scalar ` D ) ) = ( 1r ` ( Scalar ` D ) ) |
| 19 |
13 6 8 16 7 17 18
|
lmodvsubval2 |
|- ( ( D e. LMod /\ G e. ( Base ` D ) /\ H e. ( Base ` D ) ) -> ( G .- H ) = ( G .+ ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) ) |
| 20 |
12 14 15 19
|
syl3anc |
|- ( ph -> ( G .- H ) = ( G .+ ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) ) |
| 21 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 22 |
21 2
|
opprneg |
|- N = ( invg ` ( oppR ` R ) ) |
| 23 |
1 21 5 16 9
|
ldualsca |
|- ( ph -> ( Scalar ` D ) = ( oppR ` R ) ) |
| 24 |
23
|
fveq2d |
|- ( ph -> ( invg ` ( Scalar ` D ) ) = ( invg ` ( oppR ` R ) ) ) |
| 25 |
22 24
|
eqtr4id |
|- ( ph -> N = ( invg ` ( Scalar ` D ) ) ) |
| 26 |
21 3
|
oppr1 |
|- .1. = ( 1r ` ( oppR ` R ) ) |
| 27 |
23
|
fveq2d |
|- ( ph -> ( 1r ` ( Scalar ` D ) ) = ( 1r ` ( oppR ` R ) ) ) |
| 28 |
26 27
|
eqtr4id |
|- ( ph -> .1. = ( 1r ` ( Scalar ` D ) ) ) |
| 29 |
25 28
|
fveq12d |
|- ( ph -> ( N ` .1. ) = ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( N ` .1. ) .x. H ) = ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) |
| 31 |
30
|
oveq2d |
|- ( ph -> ( G .+ ( ( N ` .1. ) .x. H ) ) = ( G .+ ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) .x. H ) ) ) |
| 32 |
20 31
|
eqtr4d |
|- ( ph -> ( G .- H ) = ( G .+ ( ( N ` .1. ) .x. H ) ) ) |