| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lduallmod.d |
|- D = ( LDual ` W ) |
| 2 |
|
lduallmod.w |
|- ( ph -> W e. LMod ) |
| 3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 4 |
|
eqid |
|- oF ( +g ` W ) = oF ( +g ` W ) |
| 5 |
|
eqid |
|- ( LFnl ` W ) = ( LFnl ` W ) |
| 6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 7 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 8 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
| 9 |
|
eqid |
|- ( oppR ` ( Scalar ` W ) ) = ( oppR ` ( Scalar ` W ) ) |
| 10 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
lduallmodlem |
|- ( ph -> D e. LMod ) |