| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvsubcl.f |
|- F = ( LFnl ` W ) |
| 2 |
|
ldualvsubcl.d |
|- D = ( LDual ` W ) |
| 3 |
|
ldualvsubcl.m |
|- .- = ( -g ` D ) |
| 4 |
|
ldualvsubcl.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
ldualvsubcl.g |
|- ( ph -> G e. F ) |
| 6 |
|
ldualvsubcl.h |
|- ( ph -> H e. F ) |
| 7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 8 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
| 9 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 10 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
| 11 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
| 12 |
7 8 9 1 2 10 11 3 4 5 6
|
ldualvsub |
|- ( ph -> ( G .- H ) = ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` D ) H ) ) ) |
| 13 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 14 |
7
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 15 |
4 14
|
syl |
|- ( ph -> ( Scalar ` W ) e. Ring ) |
| 16 |
|
ringgrp |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( Scalar ` W ) e. Grp ) |
| 18 |
13 9
|
ringidcl |
|- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 19 |
15 18
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 20 |
13 8
|
grpinvcl |
|- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 21 |
17 19 20
|
syl2anc |
|- ( ph -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 22 |
1 7 13 2 11 4 21 6
|
ldualvscl |
|- ( ph -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` D ) H ) e. F ) |
| 23 |
1 2 10 4 5 22
|
ldualvaddcl |
|- ( ph -> ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` D ) H ) ) e. F ) |
| 24 |
12 23
|
eqeltrd |
|- ( ph -> ( G .- H ) e. F ) |