Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsubcl.f |
|- F = ( LFnl ` W ) |
2 |
|
ldualvsubcl.d |
|- D = ( LDual ` W ) |
3 |
|
ldualvsubcl.m |
|- .- = ( -g ` D ) |
4 |
|
ldualvsubcl.w |
|- ( ph -> W e. LMod ) |
5 |
|
ldualvsubcl.g |
|- ( ph -> G e. F ) |
6 |
|
ldualvsubcl.h |
|- ( ph -> H e. F ) |
7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
8 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
10 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
11 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
12 |
7 8 9 1 2 10 11 3 4 5 6
|
ldualvsub |
|- ( ph -> ( G .- H ) = ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` D ) H ) ) ) |
13 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
14 |
7
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
15 |
4 14
|
syl |
|- ( ph -> ( Scalar ` W ) e. Ring ) |
16 |
|
ringgrp |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
17 |
15 16
|
syl |
|- ( ph -> ( Scalar ` W ) e. Grp ) |
18 |
13 9
|
ringidcl |
|- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
19 |
15 18
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
20 |
13 8
|
grpinvcl |
|- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
21 |
17 19 20
|
syl2anc |
|- ( ph -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
22 |
1 7 13 2 11 4 21 6
|
ldualvscl |
|- ( ph -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` D ) H ) e. F ) |
23 |
1 2 10 4 5 22
|
ldualvaddcl |
|- ( ph -> ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` D ) H ) ) e. F ) |
24 |
12 23
|
eqeltrd |
|- ( ph -> ( G .- H ) e. F ) |