Metamath Proof Explorer


Theorem ldualvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualvscl.f
|- F = ( LFnl ` W )
ldualvscl.r
|- R = ( Scalar ` W )
ldualvscl.k
|- K = ( Base ` R )
ldualvscl.d
|- D = ( LDual ` W )
ldualvscl.s
|- .x. = ( .s ` D )
ldualvscl.w
|- ( ph -> W e. LMod )
ldualvscl.x
|- ( ph -> X e. K )
ldualvscl.g
|- ( ph -> G e. F )
Assertion ldualvscl
|- ( ph -> ( X .x. G ) e. F )

Proof

Step Hyp Ref Expression
1 ldualvscl.f
 |-  F = ( LFnl ` W )
2 ldualvscl.r
 |-  R = ( Scalar ` W )
3 ldualvscl.k
 |-  K = ( Base ` R )
4 ldualvscl.d
 |-  D = ( LDual ` W )
5 ldualvscl.s
 |-  .x. = ( .s ` D )
6 ldualvscl.w
 |-  ( ph -> W e. LMod )
7 ldualvscl.x
 |-  ( ph -> X e. K )
8 ldualvscl.g
 |-  ( ph -> G e. F )
9 eqid
 |-  ( Base ` W ) = ( Base ` W )
10 eqid
 |-  ( .r ` R ) = ( .r ` R )
11 1 9 2 3 10 4 5 6 7 8 ldualvs
 |-  ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) )
12 9 2 3 10 1 6 8 7 lflvscl
 |-  ( ph -> ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) e. F )
13 11 12 eqeltrd
 |-  ( ph -> ( X .x. G ) e. F )