Description: The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualvscl.f | |- F = ( LFnl ` W ) |
|
ldualvscl.r | |- R = ( Scalar ` W ) |
||
ldualvscl.k | |- K = ( Base ` R ) |
||
ldualvscl.d | |- D = ( LDual ` W ) |
||
ldualvscl.s | |- .x. = ( .s ` D ) |
||
ldualvscl.w | |- ( ph -> W e. LMod ) |
||
ldualvscl.x | |- ( ph -> X e. K ) |
||
ldualvscl.g | |- ( ph -> G e. F ) |
||
Assertion | ldualvscl | |- ( ph -> ( X .x. G ) e. F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvscl.f | |- F = ( LFnl ` W ) |
|
2 | ldualvscl.r | |- R = ( Scalar ` W ) |
|
3 | ldualvscl.k | |- K = ( Base ` R ) |
|
4 | ldualvscl.d | |- D = ( LDual ` W ) |
|
5 | ldualvscl.s | |- .x. = ( .s ` D ) |
|
6 | ldualvscl.w | |- ( ph -> W e. LMod ) |
|
7 | ldualvscl.x | |- ( ph -> X e. K ) |
|
8 | ldualvscl.g | |- ( ph -> G e. F ) |
|
9 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
11 | 1 9 2 3 10 4 5 6 7 8 | ldualvs | |- ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
12 | 9 2 3 10 1 6 8 7 | lflvscl | |- ( ph -> ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) e. F ) |
13 | 11 12 | eqeltrd | |- ( ph -> ( X .x. G ) e. F ) |