| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvaddcom.f |
|- F = ( LFnl ` W ) |
| 2 |
|
ldualvaddcom.d |
|- D = ( LDual ` W ) |
| 3 |
|
ldualvaddcom.p |
|- .+ = ( +g ` D ) |
| 4 |
|
ldualvaddcom.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
ldualvaddcom.x |
|- ( ph -> X e. F ) |
| 6 |
|
ldualvaddcom.y |
|- ( ph -> Y e. F ) |
| 7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 8 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
| 9 |
7 8 1 4 5 6
|
lfladdcom |
|- ( ph -> ( X oF ( +g ` ( Scalar ` W ) ) Y ) = ( Y oF ( +g ` ( Scalar ` W ) ) X ) ) |
| 10 |
1 7 8 2 3 4 5 6
|
ldualvadd |
|- ( ph -> ( X .+ Y ) = ( X oF ( +g ` ( Scalar ` W ) ) Y ) ) |
| 11 |
1 7 8 2 3 4 6 5
|
ldualvadd |
|- ( ph -> ( Y .+ X ) = ( Y oF ( +g ` ( Scalar ` W ) ) X ) ) |
| 12 |
9 10 11
|
3eqtr4d |
|- ( ph -> ( X .+ Y ) = ( Y .+ X ) ) |