Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsubcl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualvsubcl.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
3 |
|
ldualvsubcl.m |
⊢ − = ( -g ‘ 𝐷 ) |
4 |
|
ldualvsubcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
ldualvsubcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
6 |
|
ldualvsubcl.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
11 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
12 |
7 8 9 1 2 10 11 3 4 5 6
|
ldualvsub |
⊢ ( 𝜑 → ( 𝐺 − 𝐻 ) = ( 𝐺 ( +g ‘ 𝐷 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
14 |
7
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
16 |
|
ringgrp |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
18 |
13 9
|
ringidcl |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
19 |
15 18
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
13 8
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
22 |
1 7 13 2 11 4 21 6
|
ldualvscl |
⊢ ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ∈ 𝐹 ) |
23 |
1 2 10 4 5 22
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐺 ( +g ‘ 𝐷 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) ∈ 𝐹 ) |
24 |
12 23
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 − 𝐻 ) ∈ 𝐹 ) |