| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvsubcl.f |
|
| 2 |
|
ldualvsubcl.d |
|
| 3 |
|
ldualvsubcl.m |
|
| 4 |
|
ldualvsubcl.w |
|
| 5 |
|
ldualvsubcl.g |
|
| 6 |
|
ldualvsubcl.h |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
7 8 9 1 2 10 11 3 4 5 6
|
ldualvsub |
|
| 13 |
|
eqid |
|
| 14 |
7
|
lmodring |
|
| 15 |
4 14
|
syl |
|
| 16 |
|
ringgrp |
|
| 17 |
15 16
|
syl |
|
| 18 |
13 9
|
ringidcl |
|
| 19 |
15 18
|
syl |
|
| 20 |
13 8
|
grpinvcl |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
1 7 13 2 11 4 21 6
|
ldualvscl |
|
| 23 |
1 2 10 4 5 22
|
ldualvaddcl |
|
| 24 |
12 23
|
eqeltrd |
|